BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31877731)

  • 1. Indole-Containing Phytoalexin-Based Bioisosteres as Antifungals: In Vitro and In Silico Evaluation against
    Angarita-Rodríguez A; Quiroga D; Coy-Barrera E
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31877731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and Antifungal Activity against Fusarium oxysporum of Some Brassinin Analogs Derived from l-tryptophan: A DFT/B3LYP Study on the Reaction Mechanism.
    Quiroga D; Becerra LD; Sadat-Bernal J; Vargas N; Coy-Barrera E
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27727186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient synthesis of brussalexin A, a remarkable phytoalexin from Brussels sprouts.
    Pedras MS; Zheng QA; Sarwar MG
    Org Biomol Chem; 2007 Apr; 5(8):1167-9. PubMed ID: 17406713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methoxycamalexins and related compounds: Syntheses, antifungal activity and inhibition of brassinin oxidase.
    Pedras MSC; Abdoli A
    Bioorg Med Chem; 2018 Aug; 26(15):4461-4469. PubMed ID: 30078606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homology model, molecular dynamics simulation and novel pyrazole analogs design of Candida albicans CYP450 lanosterol 14 α-demethylase, a target enzyme for antifungal therapy.
    Jacob K S; Ganguly S; Kumar P; Poddar R; Kumar A
    J Biomol Struct Dyn; 2017 May; 35(7):1446-1463. PubMed ID: 27142238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phytoalexins from cauliflower, caulilexins A, B and C: isolation, structure determination, syntheses and antifungal activity.
    Pedras MS; Sarwar MG; Suchy M; Adio AM
    Phytochemistry; 2006 Jul; 67(14):1503-9. PubMed ID: 16806330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, characterization, reaction mechanism prediction and biological study of mono, bis and tetrakis pyrazole derivatives against Fusarium oxysporum f. sp. Albedinis with conceptual DFT and ligand-protein docking studies.
    Kaddouri Y; Abrigach F; Ouahhoud S; Benabbes R; El Kodadi M; Alsalme A; Al-Zaqri N; Warad I; Touzani R
    Bioorg Chem; 2021 May; 110():104696. PubMed ID: 33652343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo antifungal efficacy of plant based lawsone against Fusarium oxysporum species complex.
    Dananjaya SHS; Udayangani RMC; Shin SY; Edussuriya M; Nikapitiya C; Lee J; De Zoysa M
    Microbiol Res; 2017 Aug; 201():21-29. PubMed ID: 28602398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitors of the Detoxifying Enzyme of the Phytoalexin Brassinin Based on Quinoline and Isoquinoline Scaffolds.
    Pedras MSC; Abdoli A; Sarma-Mamillapalle VK
    Molecules; 2017 Aug; 22(8):. PubMed ID: 28805743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, synthesis, and evaluation of potential inhibitors of brassinin glucosyltransferase, a phytoalexin detoxifying enzyme from Sclerotinia sclerotiorum.
    Pedras MS; Hossain M
    Bioorg Med Chem; 2007 Sep; 15(17):5981-96. PubMed ID: 17590338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quinoline Based Monocarbonyl Curcumin Analogs as Potential Antifungal and Antioxidant Agents: Synthesis, Bioevaluation and Molecular Docking Study.
    Nagargoje AA; Akolkar SV; Siddiqui MM; Subhedar DD; Sangshetti JN; Khedkar VM; Shingate BB
    Chem Biodivers; 2020 Feb; 17(2):e1900624. PubMed ID: 31863703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The first isocyanide of plant origin expands functional group diversity in cruciferous phytoalexins: synthesis, structure and bioactivity of isocyalexin A.
    Pedras MS; Yaya EE
    Org Biomol Chem; 2012 May; 10(18):3613-6. PubMed ID: 22495624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of amino acid appended indoles: appreciable anti-fungal activity and inhibition of ergosterol biosynthesis as their probable mode of action.
    Pooja ; Prasher P; Singh P; Pawar K; Vikramdeo KS; Mondal N; Komath SS
    Eur J Med Chem; 2014 Jun; 80():325-39. PubMed ID: 24794769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unprecedented chemical structure and biomimetic synthesis of erucalexin, a phytoalexin from the wild crucifer Erucastrum gallicum.
    Pedras MS; Suchy M; Ahiahonu PW
    Org Biomol Chem; 2006 Feb; 4(4):691-701. PubMed ID: 16467943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifungal activities of some indole derivatives.
    Xu H; Wang Q; Yang WB
    Z Naturforsch C J Biosci; 2010; 65(7-8):437-9. PubMed ID: 20737910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of Isodrimeninol with PCC Yields Drimane Derivatives with Activity against
    Marin V; Iturra A; Opazo A; Schmidt B; Heydenreich M; Ortiz L; Jiménez VA; Paz C
    Biomolecules; 2020 Jul; 10(8):. PubMed ID: 32722158
    [No Abstract]   [Full Text] [Related]  

  • 17. Metabolism of the phytoalexins camalexins, their bioisosteres and analogues in the plant pathogenic fungus Alternaria brassicicola.
    Pedras MS; Abdoli A
    Bioorg Med Chem; 2013 Aug; 21(15):4541-9. PubMed ID: 23773956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifungal Properties of
    Tyśkiewicz K; Tyśkiewicz R; Konkol M; Rój E; Jaroszuk-Ściseł J; Skalicka-Woźniak K
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31569357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The binding mechanism between azoles and FgCYP51B, sterol 14α-demethylase of Fusarium graminearum.
    Qian H; Duan M; Sun X; Chi M; Zhao Y; Liang W; Du J; Huang J; Li B
    Pest Manag Sci; 2018 Jan; 74(1):126-134. PubMed ID: 28719051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted Metabolite Profiling-Based Identification of Antifungal 5-
    Marentes-Culma R; Orduz-Díaz LL; Coy-Barrera E
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30795501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.