These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 31877772)
1. Correction of RNA-Binding Protein CUGBP1 and GSK3β Signaling as Therapeutic Approach for Congenital and Adult Myotonic Dystrophy Type 1. Timchenko L Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31877772 [TBL] [Abstract][Full Text] [Related]
2. Correction of Glycogen Synthase Kinase 3β in Myotonic Dystrophy 1 Reduces the Mutant RNA and Improves Postnatal Survival of DMSXL Mice. Wang M; Weng WC; Stock L; Lindquist D; Martinez A; Gourdon G; Timchenko N; Snape M; Timchenko L Mol Cell Biol; 2019 Nov; 39(21):. PubMed ID: 31383751 [TBL] [Abstract][Full Text] [Related]
3. Correction of GSK3β at young age prevents muscle pathology in mice with myotonic dystrophy type 1. Wei C; Stock L; Valanejad L; Zalewski ZA; Karns R; Puymirat J; Nelson D; Witte D; Woodgett J; Timchenko NA; Timchenko L FASEB J; 2018 Apr; 32(4):2073-2085. PubMed ID: 29203592 [TBL] [Abstract][Full Text] [Related]
4. Therapeutic Targeting of the GSK3β-CUGBP1 Pathway in Myotonic Dystrophy. Lutz M; Levanti M; Karns R; Gourdon G; Lindquist D; Timchenko NA; Timchenko L Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445828 [TBL] [Abstract][Full Text] [Related]
5. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Kuyumcu-Martinez NM; Wang GS; Cooper TA Mol Cell; 2007 Oct; 28(1):68-78. PubMed ID: 17936705 [TBL] [Abstract][Full Text] [Related]
6. GSK3β is a new therapeutic target for myotonic dystrophy type 1. Wei C; Jones K; Timchenko NA; Timchenko L Rare Dis; 2013; 1():e26555. PubMed ID: 25003008 [TBL] [Abstract][Full Text] [Related]
7. Dysregulation of GSK3β-Target Proteins in Skin Fibroblasts of Myotonic Dystrophy Type 1 (DM1) Patients. Grande V; Hathazi D; O'Connor E; Marteau T; Schara-Schmidt U; Hentschel A; Gourdon G; Nikolenko N; Lochmüller H; Roos A J Neuromuscul Dis; 2021; 8(4):603-619. PubMed ID: 33682722 [TBL] [Abstract][Full Text] [Related]
8. Elevation of RNA-binding protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic dystrophy. Wang GS; Kearney DL; De Biasi M; Taffet G; Cooper TA J Clin Invest; 2007 Oct; 117(10):2802-11. PubMed ID: 17823658 [TBL] [Abstract][Full Text] [Related]
9. Celf1 regulates cell cycle and is partially responsible for defective myoblast differentiation in myotonic dystrophy RNA toxicity. Peng X; Shen X; Chen X; Liang R; Azares AR; Liu Y Biochim Biophys Acta; 2015 Jul; 1852(7):1490-7. PubMed ID: 25887157 [TBL] [Abstract][Full Text] [Related]
11. Small molecule kinase inhibitors alleviate different molecular features of myotonic dystrophy type 1. Wojciechowska M; Taylor K; Sobczak K; Napierala M; Krzyzosiak WJ RNA Biol; 2014; 11(6):742-54. PubMed ID: 24824895 [TBL] [Abstract][Full Text] [Related]
12. Mir-206 partially rescues myogenesis deficiency by inhibiting CUGBP1 accumulation in the cell models of myotonic dystrophy. Dong W; Chen X; Wang M; Zheng Z; Zhang X; Xiao Q; Peng X Neurol Res; 2019 Jan; 41(1):9-18. PubMed ID: 30281408 [No Abstract] [Full Text] [Related]
13. Expanded CTG repeats within the DMPK 3' UTR causes severe skeletal muscle wasting in an inducible mouse model for myotonic dystrophy. Orengo JP; Chambon P; Metzger D; Mosier DR; Snipes GJ; Cooper TA Proc Natl Acad Sci U S A; 2008 Feb; 105(7):2646-51. PubMed ID: 18272483 [TBL] [Abstract][Full Text] [Related]
14. Molecular Therapies for Myotonic Dystrophy Type 1: From Small Drugs to Gene Editing. Izzo M; Battistini J; Provenzano C; Martelli F; Cardinali B; Falcone G Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563013 [TBL] [Abstract][Full Text] [Related]
15. CUGBP1 overexpression in mouse skeletal muscle reproduces features of myotonic dystrophy type 1. Ward AJ; Rimer M; Killian JM; Dowling JJ; Cooper TA Hum Mol Genet; 2010 Sep; 19(18):3614-22. PubMed ID: 20603324 [TBL] [Abstract][Full Text] [Related]
16. MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1. de Haro M; Al-Ramahi I; De Gouyon B; Ukani L; Rosa A; Faustino NA; Ashizawa T; Cooper TA; Botas J Hum Mol Genet; 2006 Jul; 15(13):2138-45. PubMed ID: 16723374 [TBL] [Abstract][Full Text] [Related]
17. Heart-specific overexpression of CUGBP1 reproduces functional and molecular abnormalities of myotonic dystrophy type 1. Koshelev M; Sarma S; Price RE; Wehrens XH; Cooper TA Hum Mol Genet; 2010 Mar; 19(6):1066-75. PubMed ID: 20051426 [TBL] [Abstract][Full Text] [Related]
18. In silico discovery of substituted pyrido[2,3-d]pyrimidines and pentamidine-like compounds with biological activity in myotonic dystrophy models. González ÀL; Konieczny P; Llamusi B; Delgado-Pinar E; Borrell JI; Teixidó J; García-España E; Pérez-Alonso M; Estrada-Tejedor R; Artero R PLoS One; 2017; 12(6):e0178931. PubMed ID: 28582438 [TBL] [Abstract][Full Text] [Related]
19. Loss of MBNL1-mediated retrograde BDNF signaling in the myotonic dystrophy brain. Wang PY; Kuo TY; Wang LH; Liang WH; Wang GS Acta Neuropathol Commun; 2023 Mar; 11(1):44. PubMed ID: 36922901 [TBL] [Abstract][Full Text] [Related]
20. Sense and Antisense DMPK RNA Foci Accumulate in DM1 Tissues during Development. Michel L; Huguet-Lachon A; Gourdon G PLoS One; 2015; 10(9):e0137620. PubMed ID: 26339785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]