These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31877871)

  • 1. Low Cycle Fatigue Life Prediction Model of 800H Alloy Based on the Total Strain Energy Density Method.
    Zhang W; Jiang T; Liu L
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31877871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain energy-based rubber fatigue life prediction under the influence of temperature.
    Zhang J; Xue F; Wang Y; Zhang X; Han S
    R Soc Open Sci; 2018 Oct; 5(10):180951. PubMed ID: 30473840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low Cycle Fatigue Behavior of Steam Generator Tubes under Axial Loading.
    He X; Chen J; Tian W; Li Y; Jin W
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30314354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Energy-Based Unified Approach to Predict the Low-Cycle Fatigue Life of Type 316L Stainless Steel under Various Temperatures and Strain-Rates.
    Tak NH; Kim JS; Lim JY
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30986973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-Based Unified Models for Predicting the Fatigue Life Behaviors of Austenitic Steels and Welded Joints in Ultra-Supercritical Power Plants.
    Hwang JH; Kim DW; Lim JY; Hong SG
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Torsional Fatigue Life Prediction of 30CrMnSiNi2A Based on Meso-Inhomogeneous Deformation.
    Cen CX; Lu DM; Qin DW; Zhang KS
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33917852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Cycle Fatigue Behavior of the Novel Steel and 30SiMn2MoV Steel at 700 °C.
    Zhao C; Zhang J; Fu J; Lian Y; Zhang Z; Zhang C; Huang J
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33339394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.
    Song W; Liu X; Berto F; Razavi SMJ
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29695140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creep-Fatigue Experiment and Life Prediction Study of Piston 2A80 Aluminum Alloy.
    Dong Y; Liu J; Liu Y; Li H; Zhang X; Hu X
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33805819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive Modelling of the Hysteresis Loops and Strain-Energy Density for Low-Cycle Fatigue-Life Predictions of the AZ31 Magnesium Alloy.
    Klemenc J; Šeruga D; Nagode A; Nagode M
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low Cycle Fatigue Life Assessment Based on the Accumulated Plastic Strain Energy Density.
    Hu Y; Shi J; Cao X; Zhi J
    Materials (Basel); 2021 May; 14(9):. PubMed ID: 34063256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants.
    Yu ZY; Zhu SP; Liu Q; Liu Y
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28792487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Temperature on Low-Cycle Fatigue Characteristics of the HR6W Alloy.
    Junak G; Marek A; Paduchowicz M
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on Creep-Fatigue Mechanical Behavior and Life Prediction of Ti
    Wang Y; Wang X; Yang Y; Lan X; Zhang Z; Li H
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the Elastic-Plastic Correlation of Low-Cycle Fatigue for Variable Asymmetric Loadings.
    Zhang J; Li W; Dai H; Liu N; Lin J
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32481498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue life prediction for high-heat-load components made of GlidCop by elastic-plastic analysis.
    Takahashi S; Sano M; Mochizuki T; Watanabe A; Kitamura H
    J Synchrotron Radiat; 2008 Mar; 15(Pt 2):144-50. PubMed ID: 18296780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Loading Frequency and Specimen Geometry on High Cycle and Very High Cycle Fatigue Life of a High Strength Titanium Alloy.
    Li Y; Song Q; Feng S; Sun C
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30200556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fatigue Life Prediction Method Based on Strain Intensity Factor.
    Zhang W; Liu H; Wang Q; He J
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Cycle Fatigue Damage Mechanism and Life Prediction of High-Strength Compacted Graphite Cast Iron at Different Temperatures.
    Wu Q; Tan B; Pang J; Shi F; Jiang A; Zou C; Zhang Y; Li S; Zhang Y; Li X; Zhang Z
    Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic Entropy-Based Fatigue Life Assessment Method for Nickel-Based Superalloy GH4169 at Elevated Temperature Considering Cyclic Viscoplasticity.
    Ding S; Xia S; Li Z; Zhou H; Bao S; Li B; Li G
    Entropy (Basel); 2024 Apr; 26(5):. PubMed ID: 38785642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.