BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31877987)

  • 1. 3D Printed Multi-Functional Hydrogel Microneedles Based on High-Precision Digital Light Processing.
    Yao W; Li D; Zhao Y; Zhan Z; Jin G; Liang H; Yang R
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31877987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct 3D printing of triple-responsive nanocomposite hydrogel microneedles for controllable drug delivery.
    Zhou X; Liu H; Yu Z; Yu H; Meng D; Zhu L; Li H
    J Colloid Interface Sci; 2024 Sep; 670():1-11. PubMed ID: 38749378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three Dimensional Printing and Its Applications Focusing on Microneedles for Drug Delivery.
    Al-Nimry SS; Daghmash RM
    Pharmaceutics; 2023 May; 15(6):. PubMed ID: 37376046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing redefines microneedle fabrication for transdermal drug delivery.
    Song KY; Zhang WJ; Behzadfar M
    Biomed Eng Lett; 2024 Jul; 14(4):737-746. PubMed ID: 38946813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of Printing Parameters for Digital Light Processing 3D Printing of Hollow Microneedle Arrays.
    Mathew E; Pitzanti G; Gomes Dos Santos AL; Lamprou DA
    Pharmaceutics; 2021 Nov; 13(11):. PubMed ID: 34834250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning-Enabled Prediction of 3D-Printed Microneedle Features.
    Rezapour Sarabi M; Alseed MM; Karagoz AA; Tasoglu S
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and optimization of 3D printed gelatin methacryloyl microneedle arrays based on vat photopolymerization.
    Baykara D; Bedir T; Ilhan E; Mutlu ME; Gunduz O; Narayan R; Ustundag CB
    Front Bioeng Biotechnol; 2023; 11():1157541. PubMed ID: 37251572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Printing-A "Touch-Button" Approach to Manufacture Microneedles for Transdermal Drug Delivery.
    Sirbubalo M; Tucak A; Muhamedagic K; Hindija L; Rahić O; Hadžiabdić J; Cekic A; Begic-Hajdarevic D; Cohodar Husic M; Dervišević A; Vranić E
    Pharmaceutics; 2021 Jun; 13(7):. PubMed ID: 34206285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 4D-printed microneedles from dual-sensitive chitosan for non-transdermal drug delivery.
    Che QT; Seo JW; Charoensri K; Nguyen MH; Park HJ; Bae H
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129638. PubMed ID: 38266841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of 3D Printing Tilt Angle on the Penetration of 3D-Printed Microneedle Arrays.
    Razzaghi M; Akbari M
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of 3D Printing Technology in Microengineering of Microneedles.
    Detamornrat U; McAlister E; Hutton ARJ; Larrañeta E; Donnelly RF
    Small; 2022 May; 18(18):e2106392. PubMed ID: 35362226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications.
    Loh JM; Lim YJL; Tay JT; Cheng HM; Tey HL; Liang K
    Bioact Mater; 2024 Feb; 32():222-241. PubMed ID: 37869723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabricating High-Resolution and High-Dimensional Microneedle Mold through the Resolution Improvement of Stereolithography 3D Printing.
    Choo S; Jin S; Jung J
    Pharmaceutics; 2022 Mar; 14(4):. PubMed ID: 35456599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallic microneedles with interconnected porosity: A scalable platform for biosensing and drug delivery.
    Cahill EM; Keaveney S; Stuettgen V; Eberts P; Ramos-Luna P; Zhang N; Dangol M; O'Cearbhaill ED
    Acta Biomater; 2018 Oct; 80():401-411. PubMed ID: 30201432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of the fused deposition modeling-based fabrication process for polylactic acid microneedles.
    Wu L; Park J; Kamaki Y; Kim B
    Microsyst Nanoeng; 2021; 7():58. PubMed ID: 34567770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimisation of Design and Manufacturing Parameters of 3D Printed Solid Microneedles for Improved Strength, Sharpness, and Drug Delivery.
    Economidou SN; Pissinato Pere CP; Okereke M; Douroumis D
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33499301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermosensitive hydrogel microneedles for controlled transdermal drug delivery.
    Li JY; Feng YH; He YT; Hu LF; Liang L; Zhao ZQ; Chen BZ; Guo XD
    Acta Biomater; 2022 Nov; 153():308-319. PubMed ID: 36055607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of 3D Printability and Biocompatibility of Microfluidic Resin for Fabrication of Solid Microneedles.
    Tabriz AG; Viegas B; Okereke M; Uddin MJ; Lopez EA; Zand N; Ranatunga M; Getti G; Douroumis D
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36143991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous Microneedles Through Direct Ink Drawing with Nanocomposite Inks for Transdermal Collection of Interstitial Fluid.
    Pang Y; Li Y; Chen K; Wu M; Zhang J; Sun Y; Xu Y; Wang X; Wang Q; Ning X; Kong D
    Small; 2024 Jun; 20(23):e2305838. PubMed ID: 38258379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial releasing hydrogel forming microneedles.
    Turner JG; Laabei M; Li S; Estrela P; Leese HS
    Biomater Adv; 2023 Aug; 151():213467. PubMed ID: 37236117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.