BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31878003)

  • 1. Underwater Target Tracking Using Forward-Looking Sonar for Autonomous Underwater Vehicles.
    Zhang T; Liu S; He X; Huang H; Hao K
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Underwater Localization and Mapping Based on Multi-Beam Forward Looking Sonar.
    Cheng C; Wang C; Yang D; Liu W; Zhang F
    Front Neurorobot; 2021; 15():801956. PubMed ID: 35095458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple Receptive Field Network (MRF-Net) for Autonomous Underwater Vehicle Fishing Net Detection Using Forward-Looking Sonar Images.
    Qin R; Zhao X; Zhu W; Yang Q; He B; Li G; Yan T
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33801861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probabilistic 3D Reconstruction Using Two Sonar Devices.
    Joe H; Kim J; Yu SC
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Adaptive Prediction Target Search Algorithm for Multi-AUVs in an Unknown 3D Environment.
    Li J; Zhang J; Zhang G; Zhang B
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustering Cloud-Like Model-Based Targets Underwater Tracking for AUVs.
    Sheng M; Tang S; Qin H; Wan L
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30658478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Target Tracking Control of Autonomous Underwater Vehicle Based on Trajectory Prediction.
    Cao X; Ren L; Sun C
    IEEE Trans Cybern; 2023 Mar; 53(3):1968-1981. PubMed ID: 35914056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on Obstacle Detection and Avoidance of Autonomous Underwater Vehicle Based on Forward-Looking Sonar.
    Cao X; Ren L; Sun C
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):9198-9208. PubMed ID: 35294362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature Pyramid U-Net with Attention for Semantic Segmentation of Forward-Looking Sonar Images.
    Zhao D; Ge W; Chen P; Hu Y; Dang Y; Liang R; Guo X
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Real-Time Path Planning Algorithm for AUV in Unknown Underwater Environment Based on Combining PSO and Waypoint Guidance.
    Yan Z; Li J; Wu Y; Zhang G
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30577636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-AUV Target Search Based on Bioinspired Neurodynamics Model in 3-D Underwater Environments.
    Cao X; Zhu D; Yang SX
    IEEE Trans Neural Netw Learn Syst; 2016 Nov; 27(11):2364-2374. PubMed ID: 26485725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AUV SLAM and experiments using a mechanical scanning forward-looking sonar.
    He B; Liang Y; Feng X; Nian R; Yan T; Li M; Zhang S
    Sensors (Basel); 2012; 12(7):9386-410. PubMed ID: 23012549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Close-Range Tracking of Underwater Vehicles Using Light Beacons.
    Bosch J; Gracias N; Ridao P; Istenič K; Ribas D
    Sensors (Basel); 2016 Mar; 16(4):429. PubMed ID: 27023547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual Navigation for Recovering an AUV by Another AUV in Shallow Water.
    Liu S; Xu H; Lin Y; Gao L
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensor Modeling for Underwater Localization Using a Particle Filter.
    Martínez-Barberá H; Bernal-Polo P; Herrero-Pérez D
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Real-Time Reaction Obstacle Avoidance Algorithm for Autonomous Underwater Vehicles in Unknown Environments.
    Yan Z; Li J; Zhang G; Wu Y
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29393915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable laser-based underwater wireless optical communication solution between autonomous underwater vehicle fleets.
    Weng Y; Sekimori Y; Chun S; Alkhazragi O; Matsuda T; Trichili A; Ng TK; Ooi BS; Maki T
    Appl Opt; 2023 Nov; 62(31):8261-8271. PubMed ID: 38037928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CCW-YOLOv5: A forward-looking sonar target method based on coordinate convolution and modified boundary frame loss.
    Sun Y; Yin B
    PLoS One; 2024; 19(6):e0300976. PubMed ID: 38829868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autonomous navigation for autonomous underwater vehicles based on information filters and active sensing.
    He B; Zhang H; Li C; Zhang S; Liang Y; Yan T
    Sensors (Basel); 2011; 11(11):10958-80. PubMed ID: 22346682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-Gathering Scheme Using AUVs in Large-Scale Underwater Sensor Networks: A Multihop Approach.
    Khan JU; Cho HS
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27706042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.