BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31878073)

  • 21. JNK signaling mediates wing form polymorphism in brown planthoppers (Nilaparvata lugens).
    Lin X; Xu Y; Yao Y; Wang B; Lavine MD; Lavine LC
    Insect Biochem Mol Biol; 2016 Jun; 73():55-61. PubMed ID: 27120575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of genes underlying phenotypic plasticity of wing size via insulin signaling pathway by network-based analysis in Sogatella furcifera.
    Gao X; Fu Y; Ajayi OE; Guo D; Zhang L; Wu Q
    BMC Genomics; 2019 May; 20(1):396. PubMed ID: 31113376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for the presence of biogenic magnetic particles in the nocturnal migratory brown planthopper, Nilaparvata lugens.
    Pan W; Wan G; Xu J; Li X; Liu Y; Qi L; Chen F
    Sci Rep; 2016 Jan; 6():18771. PubMed ID: 26727944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptome Analysis of the Regulatory Mechanism of FoxO on Wing Dimorphism in the Brown Planthopper,
    Xu N; Wei SF; Xu HJ
    Insects; 2021 May; 12(5):. PubMed ID: 34064478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Repellency Mechanism of Natural Guar Gum-Based Film Incorporated with Citral against Brown Planthopper,
    Gao X; Hu X; Mo F; Ding Y; Li M; Li R
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054952
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sublethal effects of four insecticides on the reproduction and wing formation of brown planthopper, Nilaparvata lugens.
    Bao H; Liu S; Gu J; Wang X; Liang X; Liu Z
    Pest Manag Sci; 2009 Feb; 65(2):170-4. PubMed ID: 18937216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of the signaling pathways of wing dimorphism regulated by biotic and abiotic stress in the brown planthopper.
    Chen JX; Li WX; Su Q; Lyu J; Zhang YB; Zhang WQ
    Insect Sci; 2023 Aug; 30(4):1046-1062. PubMed ID: 36382805
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression Profiles and Biochemical Analysis of Chemosensory Protein 3 from Nilaparvata lugens (Hemiptera: Delphacidae).
    Waris MI; Younas A; Ameen A; Rasool F; Wang MQ
    J Chem Ecol; 2020 Apr; 46(4):363-377. PubMed ID: 32125582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two insulin receptors determine alternative wing morphs in planthoppers.
    Xu HJ; Xue J; Lu B; Zhang XC; Zhuo JC; He SF; Ma XF; Jiang YQ; Fan HW; Xu JY; Ye YX; Pan PL; Li Q; Bao YY; Nijhout HF; Zhang CX
    Nature; 2015 Mar; 519(7544):464-7. PubMed ID: 25799997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Candidate detoxification-related genes in brown planthopper, Nilaparvata lugens, in response to β-asarone based on transcriptomic analysis.
    Xu X; Li X; Wang F; Han K; Liu Z; Fan L; Hua H; Cai W; Yao Y
    Ecotoxicol Environ Saf; 2019 Dec; 185():109735. PubMed ID: 31586846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional analysis of Ultrabithorax in the wing-dimorphic planthopper Nilaparvata lugens (Stål, 1854) (Hemiptera: Delphacidae).
    Fu SJ; Zhang JL; Chen SJ; Chen HH; Liu YL; Xu HJ
    Gene; 2020 May; 737():144446. PubMed ID: 32035241
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insulin receptors and wing dimorphism in rice planthoppers.
    Xu HJ; Zhang CX
    Philos Trans R Soc Lond B Biol Sci; 2017 Feb; 372(1713):. PubMed ID: 27994130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The genome- and transcriptome-wide analysis of innate immunity in the brown planthopper, Nilaparvata lugens.
    Bao YY; Qu LY; Zhao D; Chen LB; Jin HY; Xu LM; Cheng JA; Zhang CX
    BMC Genomics; 2013 Mar; 14():160. PubMed ID: 23497397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative transcriptomes analysis of the wing disc between two silkworm strains with different size of wings.
    Zhang J; Blessing D; Wu C; Liu N; Li J; Qin S; Li M
    PLoS One; 2017; 12(6):e0179560. PubMed ID: 28617839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neofunctionalization of a second insulin receptor gene in the wing-dimorphic planthopper, Nilaparvata lugens.
    Xue WH; Xu N; Chen SJ; Liu XY; Zhang JL; Xu HJ
    PLoS Genet; 2021 Jun; 17(6):e1009653. PubMed ID: 34181658
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Yang X; Liu S; Lu W; Du M; Qiao Z; Liang Z; An Y; Gao J; Li X
    Front Bioeng Biotechnol; 2022; 10():1023729. PubMed ID: 36466326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Involvement of heat shock protein 40 in the wing dimorphism of the house cricket Acheta domesticus.
    Chen Q; Wen M; Li J; Zhou H; Jin S; Zhou JJ; Wang Y; Ren B
    J Insect Physiol; 2019 Apr; 114():35-44. PubMed ID: 30776423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. THE EVOLUTION OF WING DIMORPHISM IN INSECTS.
    Roff DA
    Evolution; 1986 Sep; 40(5):1009-1020. PubMed ID: 28556224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of putative abdominal vibration-related genes through transcriptome analyses in the brown planthopper (Nilaparvata lugens).
    Su Q; Lv J; Li WX; Sun JW; Li SH; Zhang WQ
    Comp Biochem Physiol Part D Genomics Proteomics; 2021 Sep; 39():100856. PubMed ID: 34090066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. De novo analysis of the Nilaparvata lugens (Stål) antenna transcriptome and expression patterns of olfactory genes.
    Zhou SS; Sun Z; Ma W; Chen W; Wang MQ
    Comp Biochem Physiol Part D Genomics Proteomics; 2014 Mar; 9():31-9. PubMed ID: 24440828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.