BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 31878100)

  • 1. Graph Theory-Based Sequence Descriptors as Remote Homology Predictors.
    Agüero-Chapin G; Galpert D; Molina-Ruiz R; Ancede-Gallardo E; Pérez-Machado G; de la Riva GA; Antunes A
    Biomolecules; 2019 Dec; 10(1):. PubMed ID: 31878100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information.
    Mooney C; Pollastri G
    Proteins; 2009 Oct; 77(1):181-90. PubMed ID: 19422056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers.
    Galpert D; Fernández A; Herrera F; Antunes A; Molina-Ruiz R; Agüero-Chapin G
    BMC Bioinformatics; 2018 May; 19(1):166. PubMed ID: 29724166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPEM: improving multiple sequence alignment with sequence profiles and predicted secondary structures.
    Zhou H; Zhou Y
    Bioinformatics; 2005 Sep; 21(18):3615-21. PubMed ID: 16020471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast model-based protein homology detection without alignment.
    Hochreiter S; Heusel M; Obermayer K
    Bioinformatics; 2007 Jul; 23(14):1728-36. PubMed ID: 17488755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alignment-Free Methods for the Detection and Specificity Prediction of Adenylation Domains.
    Agüero-Chapin G; Pérez-Machado G; Sánchez-Rodríguez A; Santos MM; Antunes A
    Methods Mol Biol; 2016; 1401():253-72. PubMed ID: 26831713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring representations of protein structure for automated remote homology detection and mapping of protein structure space.
    Molloy K; Van MJ; Barbara D; Shehu A
    BMC Bioinformatics; 2014; 15 Suppl 8(Suppl 8):S4. PubMed ID: 25080993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ProtDec-LTR2.0: an improved method for protein remote homology detection by combining pseudo protein and supervised Learning to Rank.
    Chen J; Guo M; Li S; Liu B
    Bioinformatics; 2017 Nov; 33(21):3473-3476. PubMed ID: 29077805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Descriptor-based protein remote homology identification.
    Zhang Z; Kochhar S; Grigorov MG
    Protein Sci; 2005 Feb; 14(2):431-44. PubMed ID: 15632283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the adenylation domain repertoire of nonribosomal peptide synthetases using an ensemble of sequence-search methods.
    Agüero-Chapin G; Molina-Ruiz R; Maldonado E; de la Riva G; Sánchez-Rodríguez A; Vasconcelos V; Antunes A
    PLoS One; 2013; 8(7):e65926. PubMed ID: 23874386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences.
    Mizianty MJ; Kurgan L
    BMC Bioinformatics; 2009 Dec; 10():414. PubMed ID: 20003388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distant homology detection using a LEngth and STructure-based sequence Alignment Tool (LESTAT).
    Lee MM; Bundschuh R; Chan MK
    Proteins; 2008 May; 71(3):1409-19. PubMed ID: 18076050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General overview on structure prediction of twilight-zone proteins.
    Khor BY; Tye GJ; Lim TS; Choong YS
    Theor Biol Med Model; 2015 Sep; 12():15. PubMed ID: 26338054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The WWWH of remote homolog detection: the state of the art.
    Fariselli P; Rossi I; Capriotti E; Casadio R
    Brief Bioinform; 2007 Mar; 8(2):78-87. PubMed ID: 17003074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods of remote homology detection can be combined to increase coverage by 10% in the midnight zone.
    Reid AJ; Yeats C; Orengo CA
    Bioinformatics; 2007 Sep; 23(18):2353-60. PubMed ID: 17709341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ProClust: improved clustering of protein sequences with an extended graph-based approach.
    Pipenbacher P; Schliep A; Schneckener S; Schönhuth A; Schomburg D; Schrader R
    Bioinformatics; 2002; 18 Suppl 2():S182-91. PubMed ID: 12386002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Within the twilight zone: a sensitive profile-profile comparison tool based on information theory.
    Yona G; Levitt M
    J Mol Biol; 2002 Feb; 315(5):1257-75. PubMed ID: 11827492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ProtDCal: A program to compute general-purpose-numerical descriptors for sequences and 3D-structures of proteins.
    Ruiz-Blanco YB; Paz W; Green J; Marrero-Ponce Y
    BMC Bioinformatics; 2015 May; 16():162. PubMed ID: 25982853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A discriminative method for family-based protein remote homology detection that combines inductive logic programming and propositional models.
    Bernardes JS; Carbone A; Zaverucha G
    BMC Bioinformatics; 2011 Mar; 12():83. PubMed ID: 21429187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating subcellular location for improving machine learning models of remote homology detection in eukaryotic organisms.
    Shah AR; Oehmen CS; Harper J; Webb-Robertson BJ
    Comput Biol Chem; 2007 Apr; 31(2):138-42. PubMed ID: 17416337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.