BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 31878148)

  • 21. N-acetylglucosamine kinase, Hxk1 is a multifaceted metabolic enzyme in model pathogenic yeast Candida albicans.
    Rao KH; Paul S; Natarajan K; Ghosh S
    Microbiol Res; 2022 Oct; 263():127146. PubMed ID: 35940108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Attenuation of virulence and changes in morphology in Candida albicans by disruption of the N-acetylglucosamine catabolic pathway.
    Singh P; Ghosh S; Datta A
    Infect Immun; 2001 Dec; 69(12):7898-903. PubMed ID: 11705974
    [TBL] [Abstract][Full Text] [Related]  

  • 23. N-acetylglucosamine transporter, Ngt1, undergoes sugar-responsive endosomal trafficking in Candida albicans.
    Hanumantha Rao K; Roy K; Paul S; Ghosh S
    Mol Microbiol; 2022 Feb; 117(2):429-449. PubMed ID: 34877729
    [TBL] [Abstract][Full Text] [Related]  

  • 24. N-Acetylglucosamine-Induced Cell Death in Candida albicans and Its Implications for Adaptive Mechanisms of Nutrient Sensing in Yeasts.
    Du H; Guan G; Li X; Gulati M; Tao L; Cao C; Johnson AD; Nobile CJ; Huang G
    mBio; 2015 Sep; 6(5):e01376-15. PubMed ID: 26350972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic and Phenotypic Changes Induced during N-Acetylglucosamine Signalling in the Fungal Pathogen
    Sahoo S; Sharma S; Singh MP; Singh SK; Vamanu E; Rao KH
    Biomedicines; 2023 Jul; 11(7):. PubMed ID: 37509635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel roles for GlcNAc in cell signaling.
    Naseem S; Parrino SM; Buenten DM; Konopka JB
    Commun Integr Biol; 2012 Mar; 5(2):156-9. PubMed ID: 22808320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Candida albicans exploits N-acetylglucosamine as a gut signal to establish the balance between commensalism and pathogenesis.
    Yang D; Zhang M; Su C; Dong B; Lu Y
    Nat Commun; 2023 Jun; 14(1):3796. PubMed ID: 37365160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The inducible N-acetylglucosamine catabolic pathway gene cluster in Candida albicans: discrete N-acetylglucosamine-inducible factors interact at the promoter of NAG1.
    Kumar MJ; Jamaluddin MS; Natarajan K; Kaur D; Datta A
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14218-23. PubMed ID: 11114181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. cAMP-independent signal pathways stimulate hyphal morphogenesis in Candida albicans.
    Parrino SM; Si H; Naseem S; Groudan K; Gardin J; Konopka JB
    Mol Microbiol; 2017 Mar; 103(5):764-779. PubMed ID: 27888610
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in understanding
    Arkowitz RA; Bassilana M
    F1000Res; 2019; 8():. PubMed ID: 31131089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The N-acetylglucosamine catabolic gene cluster in Trichoderma reesei is controlled by the Ndt80-like transcription factor RON1.
    Kappel L; Gaderer R; Flipphi M; Seidl-Seiboth V
    Mol Microbiol; 2016 Feb; 99(4):640-57. PubMed ID: 26481444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hyphal development in Candida albicans from different cell states.
    Su C; Yu J; Lu Y
    Curr Genet; 2018 Dec; 64(6):1239-1243. PubMed ID: 29796903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. N-acetylglucosamine-inducible CaGAP1 encodes a general amino acid permease which co-ordinates external nitrogen source response and morphogenesis in Candida albicans.
    Biswas S; Roy M; Datta A
    Microbiology (Reading); 2003 Sep; 149(Pt 9):2597-2608. PubMed ID: 12949183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification and characterization of the genes for N-acetylglucosamine kinase and N-acetylglucosamine-phosphate deacetylase in the pathogenic fungus Candida albicans.
    Yamada-Okabe T; Sakamori Y; Mio T; Yamada-Okabe H
    Eur J Biochem; 2001 Apr; 268(8):2498-505. PubMed ID: 11298769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Roles of Candida albicans Sfl1 in hyphal development.
    Li Y; Su C; Mao X; Cao F; Chen J
    Eukaryot Cell; 2007 Nov; 6(11):2112-21. PubMed ID: 17715361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Germ tube growth of Candida albicans.
    Gow NA
    Curr Top Med Mycol; 1997 Dec; 8(1-2):43-55. PubMed ID: 9504066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. N-acetylglucosamine increases symptoms and fungal burden in a murine model of oral candidiasis.
    Ishijima SA; Hayama K; Takahashi M; Holmes AR; Cannon RD; Abe S
    Med Mycol; 2012 Apr; 50(3):252-8. PubMed ID: 21859389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hyphal induction under the condition without inoculation in Candida albicans is triggered by Brg1-mediated removal of NRG1 inhibition.
    Su C; Yu J; Sun Q; Liu Q; Lu Y
    Mol Microbiol; 2018 May; 108(4):410-423. PubMed ID: 29485686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Candida albicans INT1-induced filamentation in Saccharomyces cerevisiae depends on Sla2p.
    Asleson CM; Bensen ES; Gale CA; Melms AS; Kurischko C; Berman J
    Mol Cell Biol; 2001 Feb; 21(4):1272-84. PubMed ID: 11158313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. N-acetylglucosamine, the building block of chitin, inhibits growth of Neurospora crassa.
    Gaderer R; Seidl-Seiboth V; de Vries RP; Seiboth B; Kappel L
    Fungal Genet Biol; 2017 Oct; 107():1-11. PubMed ID: 28736299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.