These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 31878206)
1. Green Energy Harvester from Vibrations Based on Bacterial Cellulose. Trigona C; Graziani S; Di Pasquale G; Pollicino A; Nisi R; Licciulli A Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878206 [TBL] [Abstract][Full Text] [Related]
2. Investigation on the Role of Ionic Liquids in the Output Signal Produced by Bacterial Cellulose-Based Mechanoelectrical Transducers. Di Pasquale G; Graziani S; Kurukunda S; Pollicino A; Trigona C Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670269 [TBL] [Abstract][Full Text] [Related]
3. Energy scavenging for long-term deployable wireless sensor networks. Mathúna CO; O'Donnell T; Martinez-Catala RV; Rohan J; O'Flynn B Talanta; 2008 May; 75(3):613-23. PubMed ID: 18585122 [TBL] [Abstract][Full Text] [Related]
4. Kinetic Electromagnetic Energy Harvester for Railway Applications-Development and Test with Wireless Sensor. Hadas Z; Rubes O; Ksica F; Chalupa J Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161651 [TBL] [Abstract][Full Text] [Related]
5. Thermal energy harvester powered piezoresistive pressure sensor system with wireless operation for nuclear reactor application. Aparna J; Philip S; Topkar A Rev Sci Instrum; 2019 Apr; 90(4):044705. PubMed ID: 31042987 [TBL] [Abstract][Full Text] [Related]
6. Cellulose an ageless renewable green nanomaterial for medical applications: An overview of ionic liquids in extraction, separation and dissolution of cellulose. Bhat AH; Khan I; Usmani MA; Umapathi R; Al-Kindy SMZ Int J Biol Macromol; 2019 May; 129():750-777. PubMed ID: 30593803 [TBL] [Abstract][Full Text] [Related]
7. Applications of a Novel Tunable Piezoelectric Vibration Energy Harvester. Raghavan S; Gupta R; Sharma L Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763945 [TBL] [Abstract][Full Text] [Related]
8. Paper actuators made with cellulose and hybrid materials. Kim J; Yun S; Mahadeva SK; Yun K; Yang SY; Maniruzzaman M Sensors (Basel); 2010; 10(3):1473-85. PubMed ID: 22294882 [TBL] [Abstract][Full Text] [Related]
9. Native Cellulose Microfiber-Based Hybrid Piezoelectric Generator for Mechanical Energy Harvesting Utility. Alam MM; Mandal D ACS Appl Mater Interfaces; 2016 Jan; 8(3):1555-8. PubMed ID: 26760435 [TBL] [Abstract][Full Text] [Related]
10. Broadband Vibration-Based Energy Harvesting for Wireless Sensor Applications Using Frequency Upconversion. Li J; Ouro-Koura H; Arnow H; Nowbahari A; Galarza M; Obispo M; Tong X; Azadmehr M; Halvorsen E; Hella MM; Tichy JA; Borca-Tasciuc DA Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300023 [TBL] [Abstract][Full Text] [Related]
11. Green microwave-assisted synthesis of cellulose/calcium silicate nanocomposites in ionic liquids and recycled ionic liquids. Jia N; Li SM; Ma MG; Sun RC; Zhu L Carbohydr Res; 2011 Dec; 346(18):2970-4. PubMed ID: 22055813 [TBL] [Abstract][Full Text] [Related]
12. Electric Power Self-Supply Module for WSN Sensor Node Based on MEMS Vibration Energy Harvester. Zhang W; Dong Y; Tan Y; Zhang M; Qian X; Wang X Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424095 [TBL] [Abstract][Full Text] [Related]
13. Depolymerization of crystalline cellulose catalyzed by acidic ionic liquids grafted onto sponge-like nanoporous polymers. Liu F; Kamat RK; Noshadi I; Peck D; Parnas RS; Zheng A; Qi C; Lin Y Chem Commun (Camb); 2013 Oct; 49(76):8456-8. PubMed ID: 23958800 [TBL] [Abstract][Full Text] [Related]
14. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring. Chung TK; Yeh PC; Lee H; Lin CM; Tseng CY; Lo WT; Wang CM; Wang WC; Tu CJ; Tasi PY; Chang JW Sensors (Basel); 2016 Feb; 16(3):269. PubMed ID: 26907297 [TBL] [Abstract][Full Text] [Related]
15. Flexible and Washable Poly(Ionic Liquid) Nanofibrous Membrane with Moisture Proof Pressure Sensing for Real-Life Wearable Electronics. Wang Z; Si Y; Zhao C; Yu D; Wang W; Sun G ACS Appl Mater Interfaces; 2019 Jul; 11(30):27200-27209. PubMed ID: 31280557 [TBL] [Abstract][Full Text] [Related]
16. Bacterial Cellulose Ionogels as Chemosensory Supports. Smith CJ; Wagle DV; O'Neill HM; Evans BR; Baker SN; Baker GA ACS Appl Mater Interfaces; 2017 Nov; 9(43):38042-38051. PubMed ID: 29016110 [TBL] [Abstract][Full Text] [Related]
17. A Vibration Energy Harvester and Power Management Solution for Battery-Free Operation of Wireless Sensor Nodes. Rodriguez JC; Nico V; Punch J Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480410 [TBL] [Abstract][Full Text] [Related]
18. Nanocellulose electroconductive composites. Shi Z; Phillips GO; Yang G Nanoscale; 2013 Apr; 5(8):3194-201. PubMed ID: 23512106 [TBL] [Abstract][Full Text] [Related]
19. A Self-Powered, Threshold-Based Wireless Sensor for the Detection of Floor Vibrations. Jung BC; Huh YC; Park JW Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563043 [TBL] [Abstract][Full Text] [Related]
20. A Polymer-based Piezoelectric Vibration Energy Harvester with a 3D Meshed-Core Structure. Tsukamoto T; Umino Y; Hashikura K; Shiomi S; Yamada K; Suzuki T J Vis Exp; 2019 Feb; (144):. PubMed ID: 30855575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]