These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 31878206)
21. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Zhu H; Luo W; Ciesielski PN; Fang Z; Zhu JY; Henriksson G; Himmel ME; Hu L Chem Rev; 2016 Aug; 116(16):9305-74. PubMed ID: 27459699 [TBL] [Abstract][Full Text] [Related]
22. Highly Flexible and Conductive Cellulose-Mediated PEDOT:PSS/MWCNT Composite Films for Supercapacitor Electrodes. Zhao D; Zhang Q; Chen W; Yi X; Liu S; Wang Q; Liu Y; Li J; Li X; Yu H ACS Appl Mater Interfaces; 2017 Apr; 9(15):13213-13222. PubMed ID: 28349683 [TBL] [Abstract][Full Text] [Related]
23. Optimization of a Piezoelectric Energy Harvester and Design of a Charge Pump Converter for CMOS-MEMS Monolithic Integration. Duque M; Leon-Salguero E; Sacristán J; Esteve J; Murillo G Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010076 [TBL] [Abstract][Full Text] [Related]
25. Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid. Pang J; Wu M; Zhang Q; Tan X; Xu F; Zhang X; Sun R Carbohydr Polym; 2015 May; 121():71-8. PubMed ID: 25659673 [TBL] [Abstract][Full Text] [Related]
26. Hydrolysis of cellulose in SO₃H-functionalized ionic liquids. Tao F; Song H; Chou L Bioresour Technol; 2011 Oct; 102(19):9000-6. PubMed ID: 21757338 [TBL] [Abstract][Full Text] [Related]
27. Dissolution of cellulose in room temperature ionic liquids: anion dependence. Payal RS; Bejagam KK; Mondal A; Balasubramanian S J Phys Chem B; 2015 Jan; 119(4):1654-9. PubMed ID: 25535797 [TBL] [Abstract][Full Text] [Related]
29. Self-Assembly of Cellulose in Super-Cooled Ionic Liquid under the Impact of Decelerated Antisolvent Infusion: An Approach toward Anisotropic Gels and Aerogels. Plappert SF; Nedelec JM; Rennhofer H; Lichtenegger HC; Bernstorff S; Liebner FW Biomacromolecules; 2018 Nov; 19(11):4411-4422. PubMed ID: 30252450 [TBL] [Abstract][Full Text] [Related]
30. Environmentally friendly microwave ionic liquids synthesis of hybrids from cellulose and AgX (X=Cl, Br). Dong YY; He J; Sun SL; Ma MG; Fu LH; Sun RC Carbohydr Polym; 2013 Oct; 98(1):168-73. PubMed ID: 23987331 [TBL] [Abstract][Full Text] [Related]
31. An insight into the influence of hydrogen bond acceptors on cellulose/1-allyl-3-methyl imidazolium chloride solution. Jiang J; Xiao Y; Huang W; Gong P; Peng S; He J; Fan M; Wang K Carbohydr Polym; 2017 Dec; 178():295-301. PubMed ID: 29050597 [TBL] [Abstract][Full Text] [Related]
32. Hybrid dual-functioning electrodes for combined ambient energy harvesting and charge storage: Towards self-powered systems. Falk M; Shleev S Biosens Bioelectron; 2019 Feb; 126():275-291. PubMed ID: 30445303 [TBL] [Abstract][Full Text] [Related]
33. Cellulose ionic conductor with tunable Seebeck coefficient for low-grade heat harvesting. Hu Y; Chen M; Qin C; Zhang J; Lu A Carbohydr Polym; 2022 Sep; 292():119650. PubMed ID: 35725205 [TBL] [Abstract][Full Text] [Related]
34. A wind energy powered wireless temperature sensor node. Zhang C; He XF; Li SY; Cheng YQ; Rao Y Sensors (Basel); 2015 Feb; 15(3):5020-31. PubMed ID: 25734649 [TBL] [Abstract][Full Text] [Related]
35. Structure-property relationships of Thai silk-microcrystalline cellulose biocomposite materials fabricated from ionic liquid. DeFrates K; Markiewicz T; Callaway K; Xue Y; Stanton J; Salas-de la Cruz D; Hu X Int J Biol Macromol; 2017 Nov; 104(Pt A):919-928. PubMed ID: 28666828 [TBL] [Abstract][Full Text] [Related]
36. Simultaneous improvement of thermal stability and redispersibility of cellulose nanocrystals by using ionic liquids. Song X; Zhou L; Ding B; Cui X; Duan Y; Zhang J Carbohydr Polym; 2018 Apr; 186():252-259. PubMed ID: 29455986 [TBL] [Abstract][Full Text] [Related]
37. Contributed Review: Recent developments in acoustic energy harvesting for autonomous wireless sensor nodes applications. Khan FU; Khattak MU Rev Sci Instrum; 2016 Feb; 87(2):021501. PubMed ID: 26931827 [TBL] [Abstract][Full Text] [Related]
38. Polymer Electrolytes as Energy-Harvesting Materials to Capture Electrical Energy from Dynamic Mechanical Deformations. Cao J; Piedrahita CR; Kyu T Macromol Rapid Commun; 2022 Jan; 43(2):e2100204. PubMed ID: 34773334 [TBL] [Abstract][Full Text] [Related]