BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31878219)

  • 41. Mechanisms underlying insect freeze tolerance.
    Toxopeus J; Sinclair BJ
    Biol Rev Camb Philos Soc; 2018 Nov; 93(4):1891-1914. PubMed ID: 29749114
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fine-scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect.
    Spacht DE; Gantz JD; Devlin JJ; McCabe EA; Lee RE; Denlinger DL; Teets NM
    Oecologia; 2021 Oct; 197(2):373-385. PubMed ID: 34596750
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Climatic variability and the evolution of insect freeze tolerance.
    Sinclair BJ; Addo-Bediako A; Chown SL
    Biol Rev Camb Philos Soc; 2003 May; 78(2):181-95. PubMed ID: 12803420
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chaperone proteins and winter survival by a freeze tolerant insect.
    Zhang G; Storey JM; Storey KB
    J Insect Physiol; 2011 Aug; 57(8):1115-22. PubMed ID: 21382374
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Endogenous and exogenous ice-nucleating agents constrain supercooling in the hatchling painted turtle.
    Costanzo JP; Baker PJ; Dinkelacker SA; Lee RE
    J Exp Biol; 2003 Feb; 206(Pt 3):477-85. PubMed ID: 12502768
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cold acclimation induces rapid and dynamic changes in freeze tolerance mechanisms in the cryophile Deschampsia antarctica E. Desv.
    Chew O; Lelean S; John UP; Spangenberg GC
    Plant Cell Environ; 2012 Apr; 35(4):829-37. PubMed ID: 22070607
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Supercooling, ice inoculation and freeze tolerance in the European common lizard, Lacerta vivipara.
    Costanzo JP; Grenot C; Lee RE
    J Comp Physiol B; 1995; 165(3):238-44. PubMed ID: 7665737
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cold hardiness and influences of hibernaculum conditions on overwintering survival of American dog tick larvae.
    Rosendale AJ; Farrow DW; Dunlevy ME; Fieler AM; Benoit JB
    Ticks Tick Borne Dis; 2016 Oct; 7(6):1155-1161. PubMed ID: 27546608
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pre-adapted to the maritime Antarctic?--rapid cold hardening of the midge, Eretmoptera murphyi.
    Everatt MJ; Worland MR; Bale JS; Convey P; Hayward SA
    J Insect Physiol; 2012 Aug; 58(8):1104-11. PubMed ID: 22684111
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential expression of microRNA species in a freeze tolerant insect, Eurosta solidaginis.
    Courteau LA; Storey KB; Morin P
    Cryobiology; 2012 Dec; 65(3):210-4. PubMed ID: 22765989
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antifreeze and ice nucleator proteins in terrestrial arthropods.
    Duman JG
    Annu Rev Physiol; 2001; 63():327-57. PubMed ID: 11181959
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Larvae of Drosophila melanogaster exhibit transcriptional activation of immune response pathways and antimicrobial peptides during recovery from supercooling stress.
    Štětina T; Poupardin R; Moos M; Šimek P; Šmilauer P; Koštál V
    Insect Biochem Mol Biol; 2019 Feb; 105():60-68. PubMed ID: 30660665
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Freeze or dehydrate: only two options for the survival of subzero temperatures in the arctic enchytraeid Fridericia ratzeli.
    Pedersen PG; Holmstrup M
    J Comp Physiol B; 2003 Sep; 173(7):601-9. PubMed ID: 12898166
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cold tolerance in sealworm ( Pseudoterranova decipiens) due to heat-shock adaptations.
    Stormo SK; Praebel K; Elvevoll EO
    Parasitology; 2009 Sep; 136(11):1317-24. PubMed ID: 19627634
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multigenerational heat acclimation increases thermal tolerance and expression levels of Hsp70 and Hsp90 in the rice leaf folder larvae.
    Gu LL; Li MZ; Wang GR; Liu XD
    J Therm Biol; 2019 Apr; 81():103-109. PubMed ID: 30975406
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Freezing survival and cryoprotective dehydration as cold tolerance mechanisms in the Antarctic nematode Panagrolaimus davidi.
    Wharton DA; Goodall G; Marshall CJ
    J Exp Biol; 2003 Jan; 206(Pt 2):215-21. PubMed ID: 12477892
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultrastructural effects of lethal freezing on brain, muscle and Malpighian tubules from freeze-tolerant larvae of the gall fly, Eurosta solidaginis.
    Lee RE; Allenspach AL; Collins SD
    J Insect Physiol; 1997 Feb; 43(1):39-45. PubMed ID: 12769928
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E. Desv.
    John UP; Polotnianka RM; Sivakumaran KA; Chew O; Mackin L; Kuiper MJ; Talbot JP; Nugent GD; Mautord J; Schrauf GE; Spangenberg GC
    Plant Cell Environ; 2009 Apr; 32(4):336-48. PubMed ID: 19143989
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cloning of heat shock protein genes (hsp70, hsc70 and hsp90) and their expression in response to larval diapause and thermal stress in the wheat blossom midge, Sitodiplosis mosellana.
    Cheng W; Li D; Wang Y; Liu Y; Zhu-Salzman K
    J Insect Physiol; 2016 Dec; 95():66-77. PubMed ID: 27639943
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Respiratory responses to chilling and freezing in two sub-antarctic insects.
    Block W; Worland MR; Bale J
    Cryobiology; 1998 Sep; 37(2):163-6. PubMed ID: 9769167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.