BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31878219)

  • 61. Effects of diapause and cold-acclimation on the avoidance of freezing injury in fat body tissue of the rice stem borer, Chilo suppressalis Walker.
    Izumi Y; Sonoda S; Tsumuki H
    J Insect Physiol; 2007 Jul; 53(7):685-90. PubMed ID: 17543330
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cold tolerance and overwintering of an introduced New Zealand frog, the brown tree frog (Litoria ewingii).
    Bazin Y; Wharton DA; Bishop PJ
    Cryo Letters; 2007; 28(5):347-58. PubMed ID: 18075704
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Surviving the cold: molecular analyses of insect cryoprotective dehydration in the Arctic springtail Megaphorura arctica (Tullberg).
    Clark MS; Thorne MA; Purać J; Burns G; Hillyard G; Popović ZD; Grubor-Lajsić G; Worland MR
    BMC Genomics; 2009 Jul; 10():328. PubMed ID: 19622137
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ice nucleation and antinucleation in nature.
    Zachariassen KE; Kristiansen E
    Cryobiology; 2000 Dec; 41(4):257-79. PubMed ID: 11222024
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Seasonal variation in freeze tolerance and ice content of the tree frog Hyla versicolor.
    Layne JR; Lee RE
    J Exp Zool; 1989 Feb; 249(2):133-7. PubMed ID: 2723602
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Thermal survival limits of young and mature larvae of a cold stenothermal chironomid from the Alps (Diamesinae: Pseudodiamesa branickii [Nowicki, 1873]).
    Lencioni V; Bernabò P
    Insect Sci; 2017 Apr; 24(2):314-324. PubMed ID: 26463003
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Interactions between desiccation resistance, host-plant contact and the thermal biology of a leaf-dwelling sub-antarctic caterpillar, Embryonopsis halticella (Lepidoptera: Yponomeutidae).
    Chown SL; Klok CJ
    J Insect Physiol; 1998 Jul; 44(7-8):615-628. PubMed ID: 12769944
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cold tolerance of Littorinidae from southern Africa: intertidal snails are not constrained to freeze tolerance.
    Sinclair BJ; Marshall DJ; Singh S; Chown SL
    J Comp Physiol B; 2004 Nov; 174(8):617-24. PubMed ID: 15517285
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mild desiccation rapidly increases freeze tolerance of the goldenrod gall fly, Eurosta solidaginis: evidence for drought-induced rapid cold-hardening.
    Levis NA; Yi SX; Lee RE
    J Exp Biol; 2012 Nov; 215(Pt 21):3768-73. PubMed ID: 22899523
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Acquisition of freezing tolerance in early autumn and seasonal changes in gall water content influence inoculative freezing of gall fly larvae, Eurosta solidaginis (Diptera, Tephritidae).
    Lee RE; Hankison SJ
    J Insect Physiol; 2003 Apr; 49(4):385-93. PubMed ID: 12769992
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Identification of differentially regulated micrornas in cold-hardy insects.
    Lyons PJ; Poitras JJ; Courteau LA; Storey KB; Morin P
    Cryo Letters; 2013; 34(1):83-9. PubMed ID: 23435712
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Real-time measurement of metabolic rate during freezing and thawing of the wood frog, Rana sylvatica: implications for overwinter energy use.
    Sinclair BJ; Stinziano JR; Williams CM; Macmillan HA; Marshall KE; Storey KB
    J Exp Biol; 2013 Jan; 216(Pt 2):292-302. PubMed ID: 23255194
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity.
    Arias NS; Bucci SJ; Scholz FG; Goldstein G
    Plant Cell Environ; 2015 Oct; 38(10):2061-70. PubMed ID: 25737264
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Sublethal effects of subzero temperatures on the light brown apple moth, Epiphyas postvittana: fitness costs in response to partial freezing.
    Morey AC; Venette RC; Hutchison WD
    Insect Sci; 2019 Apr; 26(2):311-321. PubMed ID: 29193863
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Insect overwintering in a changing climate.
    Bale JS; Hayward SA
    J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Molecular snapshot of an intracellular freezing event in an Antarctic nematode.
    Thorne MAS; Seybold A; Marshall C; Wharton D
    Cryobiology; 2017 Apr; 75():117-124. PubMed ID: 28082102
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Roles of carbohydrate reserves for local adaptation to low temperatures in the freeze tolerant oligochaete Enchytraeus albidus.
    Fisker KV; Overgaard J; Sørensen JG; Slotsbo S; Holmstrup M
    J Comp Physiol B; 2014 Feb; 184(2):167-77. PubMed ID: 24154838
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Freeze tolerance in Aporrectodea caliginosa and other earthworms from Finland.
    Holmstrup M; Overgaard J
    Cryobiology; 2007 Aug; 55(1):80-6. PubMed ID: 17618617
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Low Temperature Tolerance of Culicoides sonorensis (Diptera: Ceratopogonidae) Eggs, Larvae, and Pupae From Temperate and Subtropical Climates.
    McDermott EG; Mayo CE; Mullens BA
    J Med Entomol; 2017 Mar; 54(2):264-274. PubMed ID: 28011723
    [TBL] [Abstract][Full Text] [Related]  

  • 80. How Does Diurnal and Nocturnal Warming Affect the Freezing Resistance of Antarctic Vascular Plants?
    López D; Sanhueza C; Salvo-Garrido H; Bascunan-Godoy L; Bravo LA
    Plants (Basel); 2023 Feb; 12(4):. PubMed ID: 36840154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.