These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31878294)

  • 21. Inhibitory effect of cadmium(II) ion on anodic electrochemically active biofilms performance in bioelectrochemical systems.
    Zhang Y; Wen J; Chen X; Huang G; Xu Y; Yuan Y; Sun J; Li G; Ning XA; Lu X; Wang Y
    Chemosphere; 2018 Nov; 211():202-209. PubMed ID: 30071432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced removal of petroleum hydrocarbons using a bioelectrochemical remediation system with pre-cultured anodes.
    Venkidusamy K; Megharaj M; Marzorati M; Lockington R; Naidu R
    Sci Total Environ; 2016 Jan; 539():61-69. PubMed ID: 26360455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Petrophilic, Fe(III) Reducing Exoelectrogen
    Venkidusamy K; Hari AR; Megharaj M
    Front Microbiol; 2018; 9():349. PubMed ID: 29593662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis.
    Tao HC; Lei T; Shi G; Sun XN; Wei XY; Zhang LJ; Wu WM
    J Hazard Mater; 2014 Jan; 264():1-7. PubMed ID: 24269969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Field application of selective precipitation for recovering Cu and Zn in drainage discharged from an operating mine.
    Oh C; Han YS; Park JH; Bok S; Cheong Y; Yim G; Ji S
    Sci Total Environ; 2016 Jul; 557-558():212-20. PubMed ID: 26994808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors.
    Sierra-Alvarez R; Karri S; Freeman S; Field JA
    Water Sci Technol; 2006; 54(2):179-85. PubMed ID: 16939100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of sulphates acidity and iron from acid mine drainage in a bench scale biochemical treatment system.
    Prasad D; Henry JG
    Environ Technol; 2009 Feb; 30(2):151-60. PubMed ID: 19278156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies.
    Cheng S; Dempsey BA; Logan BE
    Environ Sci Technol; 2007 Dec; 41(23):8149-53. PubMed ID: 18186351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduced graphene oxide and biofilms as cathode catalysts to enhance energy and metal recovery in microbial fuel cell.
    Wu Y; Wang L; Jin M; Kong F; Qi H; Nan J
    Bioresour Technol; 2019 Jul; 283():129-137. PubMed ID: 30901585
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms.
    Uria N; Ferrera I; Mas J
    BMC Microbiol; 2017 Oct; 17(1):208. PubMed ID: 29047333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of a biosurfactant producing electroactive Bacillus sp. for enhanced Microbial Fuel Cell dye decolourisation.
    Gomaa OM; Selim N; Fathy R; Maghrawy HH; Gamal M; El Kareem HA; Kyazze G; Keshavarz T
    Enzyme Microb Technol; 2021 Jun; 147():109767. PubMed ID: 33992401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbial fuel cells: From fundamentals to applications. A review.
    Santoro C; Arbizzani C; Erable B; Ieropoulos I
    J Power Sources; 2017 Jul; 356():225-244. PubMed ID: 28717261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Augmenting Microbial Fuel Cell power by coupling with Supported Liquid Membrane permeation for zinc recovery.
    Fradler KR; Michie I; Dinsdale RM; Guwy AJ; Premier GC
    Water Res; 2014 May; 55():115-25. PubMed ID: 24602866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 2-Bromoethanesulfonate degradation in bioelectrochemical systems.
    Rago L; Guerrero J; Baeza JA; Guisasola A
    Bioelectrochemistry; 2015 Oct; 105():44-9. PubMed ID: 25984658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Remediation of acid mine drainage using microbial fuel cell based on sludge anaerobic fermentation.
    Peng X; Tang T; Zhu X; Jia G; Ding Y; Chen Y; Yang Y; Tang W
    Environ Technol; 2017 Oct; 38(19):2400-2409. PubMed ID: 27852149
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent.
    Baranitharan E; Khan MR; Prasad DM; Teo WF; Tan GY; Jose R
    Bioprocess Biosyst Eng; 2015 Jan; 38(1):15-24. PubMed ID: 24981021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbially enhanced dissolution of HgS in an acid mine drainage system in the California Coast Range.
    Jew AD; Behrens SF; Rytuba JJ; Kappler A; Spormann AM; Brown GE
    Geobiology; 2014 Jan; 12(1):20-33. PubMed ID: 24224806
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and characterization of a novel electricity-producing yeast, Candida sp. IR11.
    Lee YY; Kim TG; Cho KS
    Bioresour Technol; 2015 Sep; 192():556-63. PubMed ID: 26092068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electricity generation from cysteine in a microbial fuel cell.
    Logan BE; Murano C; Scott K; Gray ND; Head IM
    Water Res; 2005 Mar; 39(5):942-52. PubMed ID: 15743641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.
    Picot M; Lapinsonnière L; Rothballer M; Barrière F
    Biosens Bioelectron; 2011 Oct; 28(1):181-8. PubMed ID: 21803564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.