These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31878418)

  • 21. Single-shot quantitative aberration and scattering length measurements in mouse brain tissues using an extended-source Shack-Hartmann wavefront sensor.
    Imperato S; Harms F; Hubert A; Mercier M; Bourdieu L; Fragola A
    Opt Express; 2022 Apr; 30(9):15250-15265. PubMed ID: 35473251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wavefront aberration and its relationship to the accommodative stimulus-response function in myopic subjects.
    Hazel CA; Cox MJ; Strang NC
    Optom Vis Sci; 2003 Feb; 80(2):151-8. PubMed ID: 12597330
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imaging performance of microscopy adaptive-optics system using scene-based wavefront sensing.
    Ashida Y; Honma Y; Miura N; Shibuya T; Kikuchi H; Tamada Y; Kamei Y; Matsuda A; Hattori M
    J Biomed Opt; 2020 Dec; 25(12):. PubMed ID: 33331151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical properties of the mouse eye.
    Geng Y; Schery LA; Sharma R; Dubra A; Ahmad K; Libby RT; Williams DR
    Biomed Opt Express; 2011 Feb; 2(4):717-38. PubMed ID: 21483598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modal-based phase retrieval for adaptive optics.
    Antonello J; Verhaegen M
    J Opt Soc Am A Opt Image Sci Vis; 2015 Jun; 32(6):1160-70. PubMed ID: 26367051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of Virtual Shack-Hartmann Wavefront Sensing.
    Yue X; Yang Y; Xiao F; Dai H; Geng C; Zhang Y
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions.
    Villegas EA; Artal P
    Optom Vis Sci; 2003 Feb; 80(2):106-14. PubMed ID: 12597325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hartmann-Shack wavefront sensing without a lenslet array using a digital micromirror device.
    Vohnsen B; Carmichael Martins A; Qaysi S; Sharmin N
    Appl Opt; 2018 Aug; 57(22):E199-E204. PubMed ID: 30117885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modal integration of Hartmann and Shack-Hartmann patterns.
    Hernández-Gómez G; Malacara-Hernández Z; Malacara-Doblado D; Díaz-Uribe R; Malacara-Hernández D
    J Opt Soc Am A Opt Image Sci Vis; 2014 Apr; 31(4):846-51. PubMed ID: 24695148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of the Gaussian modeling algorithm to a Shack-Hartmann wavefront sensor for daylight adaptive optics.
    Xu L; Wang J; Yao K; Yang L
    Opt Lett; 2021 Sep; 46(17):4196-4199. PubMed ID: 34469973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. More Zernike modes' open-loop measurement in the sub-aperture of the Shack-Hartmann wavefront sensor.
    Zhu Z; Mu Q; Li D; Yang C; Cao Z; Hu L; Xuan L
    Opt Express; 2016 Oct; 24(21):24611-24623. PubMed ID: 27828187
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative comparison of different-shaped wavefront sensors and preliminary results for defocus aberrations on a mechanical eye.
    Carvalho LA; Chamon W; Schor P; Castro JC
    Arq Bras Oftalmol; 2006; 69(2):239-47. PubMed ID: 16699677
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal.
    Mishra SK; Bhatt R; Mohan D; Gupta AK; Sharma A
    Appl Opt; 2009 Nov; 48(33):6458-65. PubMed ID: 19935965
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient implementation of a spatial light modulator as a diffractive optical microlens array in a digital Shack-Hartmann wavefront sensor.
    Zhao L; Bai N; Li X; Ong LS; Fang ZP; Asundi AK
    Appl Opt; 2006 Jan; 45(1):90-4. PubMed ID: 16422324
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aberrations of the human eye in visible and near infrared illumination.
    Llorente L; Diaz-Santana L; Lara-Saucedo D; Marcos S
    Optom Vis Sci; 2003 Jan; 80(1):26-35. PubMed ID: 12553541
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Sensitive Shack-Hartmann Wavefront Sensor: Application to Non-Transparent Tissue Mimic Imaging with Adaptive Light-Sheet Fluorescence Microscopy.
    Morgado Brajones J; Clouvel G; Dovillaire G; Levecq X; Lorenzo C
    Methods Protoc; 2019 Jul; 2(3):. PubMed ID: 31336779
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive optics in the mouse eye: wavefront sensing based vs. image-guided aberration correction.
    Wahl DJ; Zhang P; Mocci J; Quintavalla M; Muradore R; Jian Y; Bonora S; Sarunic MV; Zawadzki RJ
    Biomed Opt Express; 2019 Sep; 10(9):4757-4774. PubMed ID: 31565523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laboratory study of aberration calculation in underwater turbulence using Shack-Hartmann wavefront sensor and Zernike polynomials.
    Aghajani A; Kashani FD; Yousefi M
    Opt Express; 2024 Apr; 32(9):15978-15992. PubMed ID: 38859236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving the system stability of a digital Shack-Hartmann wavefront sensor with a special lenslet array.
    Zhao LP; Bai N; Li X; Fang ZP; Zhong ZW; Hein AA
    Appl Opt; 2009 Jan; 48(1):A71-4. PubMed ID: 19107158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor.
    Pantanelli S; MacRae S; Jeong TM; Yoon G
    Ophthalmology; 2007 Nov; 114(11):2013-21. PubMed ID: 17553566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.