These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31878497)

  • 1. Low-loss coupling from single-mode solid-core fibers to anti-resonant hollow-core fibers by fiber tapering technique.
    Huang W; Cui Y; Li X; Zhou Z; Li Z; Wang M; Xi X; Chen Z; Wang Z
    Opt Express; 2019 Dec; 27(26):37111-37121. PubMed ID: 31878497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-loss multi-mode anti-resonant hollow-core fibers.
    Wu D; Yu F; Wu C; Zhao M; Zheng J; Hu L; Knight J
    Opt Express; 2023 Jun; 31(13):21870-21880. PubMed ID: 37381274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization method for low-loss single-mode bending negative curvature anti-resonant hollow-core fiber designed by mode modification.
    He J; Jiang P; Caiyang W; Qin Y; Zhou M; Deng J; Yang J; Hu L; Yang H
    Appl Opt; 2022 Dec; 61(36):10778-10787. PubMed ID: 36606938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Birefringence properties of anti-resonant octagonal-core and nodeless hollow-core fibers.
    Leonov SO; Yelistratova EA; Demidov VV; Pryamikov AD
    Appl Opt; 2020 Jun; 59(16):5013-5019. PubMed ID: 32543502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of an anti-resonant hollow-core fiber with a multimode Yb-doped fiber for high power near-diffraction-limited laser operation.
    Li H; Goel C; Zang J; Raghuraman S; Chen S; Abu Hassan MR; Chang W; Yoo S
    Opt Express; 2022 Feb; 30(5):7928-7937. PubMed ID: 35299545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultralow-loss fusion splicing between negative curvature hollow-core fibers and conventional SMFs with a reverse-tapering method.
    Wang C; Yu R; Debord B; Gérôme F; Benabid F; Chiang KS; Xiao L
    Opt Express; 2021 Jul; 29(14):22470-22478. PubMed ID: 34266009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber laser source of 8 W at 3.1 µm based on acetylene-filled hollow-core silica fibers.
    Huang W; Wang Z; Zhou Z; Cui Y; Li H; Pei W; Wang M; Chen J
    Opt Lett; 2022 May; 47(9):2354-2357. PubMed ID: 35486798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-mode, low loss hollow-core anti-resonant fiber designs.
    Habib MS; Antonio-Lopez JE; Markos C; Schülzgen A; Amezcua-Correa R
    Opt Express; 2019 Feb; 27(4):3824-3836. PubMed ID: 30876007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-core antiresonant hollow core fibers.
    Liu X; Fan Z; Shi Z; Ma Y; Yu J; Zhang J
    Opt Express; 2016 Jul; 24(15):17453-8. PubMed ID: 27464191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-mode solarization-free hollow-core fiber for ultraviolet pulse delivery.
    Yu F; Cann M; Brunton A; Wadsworth W; Knight J
    Opt Express; 2018 Apr; 26(8):10879-10887. PubMed ID: 29716018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delivery of nanosecond laser pulses by multi-mode anti-resonant hollow core fiber at 1 µm wavelength.
    Zhao M; Yu F; Wu D; Zhu X; Chen S; Wang M; Liu M; Zhao K; Zhai R; Jia Z; Knight J
    Opt Express; 2024 May; 32(10):17229-17238. PubMed ID: 38858912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the material loss of anti-resonant hollow-core fibers.
    Wu D; Yu F; Liao M
    Opt Express; 2020 Apr; 28(8):11840-11851. PubMed ID: 32403686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hundred-meter-scale, kilowatt peak-power, near-diffraction-limited, mid-infrared pulse delivery via the low-loss hollow-core fiber.
    Fu Q; Wu Y; Davidson IA; Xu L; Jasion GT; Liang S; Rikimi S; Poletti F; Wheeler NV; Richardson DJ
    Opt Lett; 2022 Oct; 47(20):5301-5304. PubMed ID: 36240347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ background-free Raman probe using double-cladding anti-resonant hollow-core fibers.
    Luan S; Chen S; Zhu X; Wu D; Yu F; Hu J; Yu C; Hu L
    Biomed Opt Express; 2024 Mar; 15(3):1709-1718. PubMed ID: 38495691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible single-mode delivery of a high-power 2  μm pulsed laser using an antiresonant hollow-core fiber.
    Lee E; Luo J; Sun B; Ramalingam V; Zhang Y; Wang Q; Yu F; Yu X
    Opt Lett; 2018 Jun; 43(12):2732-2735. PubMed ID: 29905675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-stage generation of extreme ultraviolet dispersive waves by tapering gas-filled hollow-core anti-resonant fibers.
    Habib MS; Markos C; Antonio-Lopez JE; Correa RA; Bang O; Bache M
    Opt Express; 2018 Sep; 26(19):24357-24371. PubMed ID: 30469556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delivery of CW laser power up to 300 watts at 1080 nm by an uncooled low-loss anti-resonant hollow-core fiber.
    Zhu X; Wu D; Wang Y; Yu F; Li Q; Qi Y; Knight J; Chen S; Hu L
    Opt Express; 2021 Jan; 29(2):1492-1501. PubMed ID: 33726363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-induced damage of an anti-resonant hollow-core fiber for high-power laser delivery at 1 µm.
    Zhu X; Yu F; Wu D; Chen S; Jiang Y; Hu L
    Opt Lett; 2022 Jul; 47(14):3548-3551. PubMed ID: 35838727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8  μm.
    Li Z; Huang W; Cui Y; Wang Z
    Opt Lett; 2018 Oct; 43(19):4671-4674. PubMed ID: 30272711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-resonance, inhibited coupling and mode transition in depressed core fibers.
    Lian X; Farrell G; Wu Q; Han W; Shen C; Ma Y; Semenova Y
    Opt Express; 2020 May; 28(11):16526-16541. PubMed ID: 32549473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.