These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 31878508)

  • 1. Coupled boron-doping and geometry control of tin-catalyzed silicon nanowires for high performance radial junction photovoltaics.
    Zhang S; Zhang T; Cao L; Liu Z; Wang J; Xu J; Chen K; Yu L
    Opt Express; 2019 Dec; 27(26):37248-37256. PubMed ID: 31878508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radial junction amorphous silicon solar cells on PECVD-grown silicon nanowires.
    Yu L; O'Donnell B; Foldyna M; Roca i Cabarrocas P
    Nanotechnology; 2012 May; 23(19):194011. PubMed ID: 22539188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells.
    Yu L; Fortuna F; O'Donnell B; Jeon T; Foldyna M; Picardi G; Roca i Cabarrocas P
    Nano Lett; 2012 Aug; 12(8):4153-8. PubMed ID: 22822909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced radial junction thin film photovoltaics and detectors built on standing silicon nanowires.
    Zhang T; Wang J; Yu L; Xu J; Roca I Cabarrocas P
    Nanotechnology; 2019 Jul; 30(30):302001. PubMed ID: 30849766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing individual radial junction solar cells over millions on VLS-grown silicon nanowires.
    Yu L; Rigutti L; Tchernycheva M; Misra S; Foldyna M; Picardi G; Roca i Cabarrocas P
    Nanotechnology; 2013 Jul; 24(27):275401. PubMed ID: 23764545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, morphology and compositional evolution of silicon nanowires directly grown on SnO(2) substrates.
    Yu L; Alet PJ; Picardi G; Maurin I; Cabarrocas PR
    Nanotechnology; 2008 Dec; 19(48):485605. PubMed ID: 21836306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemically doped radial junction characteristics in silicon nanowires.
    Ng MF; Tong SW
    Nano Lett; 2012 Dec; 12(12):6133-8. PubMed ID: 23137035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single wire radial junction photovoltaic devices fabricated using aluminum catalyzed silicon nanowires.
    Ke Y; Wang X; Weng XJ; Kendrick CE; Yu YA; Eichfeld SM; Yoon HP; Redwing JM; Mayer TS; Habib YM
    Nanotechnology; 2011 Nov; 22(44):445401. PubMed ID: 21983364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomically smooth p-doped silicon nanowires catalyzed by aluminum at low temperature.
    Moutanabbir O; Senz S; Scholz R; Alexe M; Kim Y; Pippel E; Wang Y; Wiethoff C; Nabbefeld T; Meyer zu Heringdorf F; Horn-von Hoegen M
    ACS Nano; 2011 Feb; 5(2):1313-20. PubMed ID: 21210666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band-gap engineering of halogenated silicon nanowires through molecular doping.
    de Santiago F; Trejo A; Miranda A; Carvajal E; Pérez LA; Cruz-Irisson M
    J Mol Model; 2017 Oct; 23(11):314. PubMed ID: 29035419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abrupt degenerately-doped silicon nanowire tunnel junctions.
    Cordoba C; Teitsworth TS; Yang M; Cahoon JF; Kavanagh KL
    Nanotechnology; 2020 Oct; 31(41):415708. PubMed ID: 32442995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tapering control of Si nanowires grown from SiCl₄ at reduced pressure.
    Krylyuk S; Davydov AV; Levin I
    ACS Nano; 2011 Jan; 5(1):656-64. PubMed ID: 21158417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells.
    Lee YJ; Yao YC; Yang CH
    Opt Express; 2013 Jan; 21 Suppl 1():A7-14. PubMed ID: 23389277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realization of radial p-n junction silicon nanowire solar cell based on low-temperature and shallow phosphorus doping.
    Dong G; Liu F; Liu J; Zhang H; Zhu M
    Nanoscale Res Lett; 2013 Dec; 8(1):544. PubMed ID: 24369781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma-enhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts.
    Yu L; O'Donnell B; Alet PJ; Conesa-Boj S; Peiró F; Arbiol J; Cabarrocas PR
    Nanotechnology; 2009 Jun; 20(22):225604. PubMed ID: 19436096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of phosphine as an n-type dopant source for vapor-liquid-solid growth of silicon nanowires.
    Wang Y; Lew KK; Ho TT; Pan L; Novak SW; Dickey EC; Redwing JM; Mayer TS
    Nano Lett; 2005 Nov; 5(11):2139-43. PubMed ID: 16277441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of HCl on the doping and shape control of silicon nanowires.
    Gentile P; Solanki A; Pauc N; Oehler F; Salem B; Rosaz G; Baron T; Den Hertog M; Calvo V
    Nanotechnology; 2012 Jun; 23(21):215702. PubMed ID: 22551776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Pyrolytic Synthesis of Silicon Nanowires.
    Chan JC; Tran H; Pattison JW; Rananavare SB
    Solid State Electron; 2010 Oct; 54(10):1185-1191. PubMed ID: 20711489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional radial junction solar cell based on ordered silicon nanowires.
    Chen J; Subramani T; Jevasuwan W; Pradel KC; Fukata N
    Nanotechnology; 2019 Aug; 30(34):344001. PubMed ID: 30716727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural modulation of silicon nanowires by combining a high gas flow rate with metal catalysts.
    Seo D; Lee J; Kim SW; Kim I; Na J; Hong MH; Choi HJ
    Nanoscale Res Lett; 2015; 10():190. PubMed ID: 26034411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.