These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 31878561)

  • 1. Compact, low-threshold squeezed light source.
    Arnbak J; Jacobsen CS; Andrade RB; Guo X; Neergaard-Nielsen JS; Andersen UL; Gehring T
    Opt Express; 2019 Dec; 27(26):37877-37885. PubMed ID: 31878561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity.
    Ast S; Mehmet M; Schnabel R
    Opt Express; 2013 Jun; 21(11):13572-9. PubMed ID: 23736610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum frequency conversion of vacuum squeezed light to bright tunable blue squeezed light and higher-order spatial modes.
    Kerdoncuff H; Christensen JB; Lassen M
    Opt Express; 2021 Sep; 29(19):29828-29840. PubMed ID: 34614720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A squeezed light source operated under high vacuum.
    Wade AR; Mansell GL; Chua SS; Ward RL; Slagmolen BJ; Shaddock DA; McClelland DE
    Sci Rep; 2015 Dec; 5():18052. PubMed ID: 26657616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-mode squeezing in arbitrary spatial modes.
    Semmler M; Berg-Johansen S; Chille V; Gabriel C; Banzer P; Aiello A; Marquardt C; Leuchs G
    Opt Express; 2016 Apr; 24(7):7633-42. PubMed ID: 27137050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compact sub-kilohertz low-frequency quantum light source based on four-wave mixing in cesium vapor.
    Ma R; Liu W; Qin Z; Su X; Jia X; Zhang J; Gao J
    Opt Lett; 2018 Mar; 43(6):1243-1246. PubMed ID: 29543262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplitude squeezing by means of quasi-phase-matched second-harmonic generation in a lithium niobate waveguide.
    Serkland DK; Kumar P; Arbore MA; Fejer MM
    Opt Lett; 1997 Oct; 22(19):1497-9. PubMed ID: 18188280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of Squeezed Light in the 2  μm Region.
    Mansell GL; McRae TG; Altin PA; Yap MJ; Ward RL; Slagmolen BJJ; Shaddock DA; McClelland DE
    Phys Rev Lett; 2018 May; 120(20):203603. PubMed ID: 29864323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous-wave nonclassical light with gigahertz squeezing bandwidth.
    Ast S; Samblowski A; Mehmet M; Steinlechner S; Eberle T; Schnabel R
    Opt Lett; 2012 Jun; 37(12):2367-9. PubMed ID: 22739910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous-wave squeezed states of light via 'up-down' self-phase modulation.
    Singh AP; Ast S; Mehmet M; Vahlbruch H; Schnabel R
    Opt Express; 2019 Aug; 27(16):22408-22418. PubMed ID: 31510535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a compact fibered squeezing parametric source.
    Brieussel A; Ott K; Joos M; Treps N; Fabre C
    Opt Lett; 2018 Mar; 43(6):1267-1270. PubMed ID: 29543268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum frequency down-conversion of bright amplitude-squeezed states.
    Kong D; Li Z; Wang S; Wang X; Li Y
    Opt Express; 2014 Oct; 22(20):24192-201. PubMed ID: 25321994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB.
    Mehmet M; Ast S; Eberle T; Steinlechner S; Vahlbruch H; Schnabel R
    Opt Express; 2011 Dec; 19(25):25763-72. PubMed ID: 22273968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of vacuum squeezing resonant on the rubidium D1 line at 795 nm.
    Han Y; Wen X; He J; Yang B; Wang Y; Wang J
    Opt Express; 2016 Feb; 24(3):2350-9. PubMed ID: 26906810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated source of broadband quadrature squeezed light.
    Hoff UB; Nielsen BM; Andersen UL
    Opt Express; 2015 May; 23(9):12013-36. PubMed ID: 25969291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-optical phase-sensitive detection for ultra-fast quantum computation.
    Takanashi N; Inoue A; Kashiwazaki T; Kazama T; Enbutsu K; Kasahara R; Umeki T; Furusawa A
    Opt Express; 2020 Nov; 28(23):34916-34926. PubMed ID: 33182949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of squeezed light with 10-dB quantum-noise reduction.
    Vahlbruch H; Mehmet M; Chelkowski S; Hage B; Franzen A; Lastzka N; Gossler S; Danzmann K; Schnabel R
    Phys Rev Lett; 2008 Jan; 100(3):033602. PubMed ID: 18232978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Squeezed vacuum phase control at 2  μm.
    Yap MJ; Gould DW; McRae TG; Altin PA; Kijbunchoo N; Mansell GL; Ward RL; Shaddock DA; Slagmolen BJJ; McClelland DE
    Opt Lett; 2019 Nov; 44(21):5386-5389. PubMed ID: 31675014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Interferometer Combining Squeezing and Parametric Amplification.
    Zuo X; Yan Z; Feng Y; Ma J; Jia X; Xie C; Peng K
    Phys Rev Lett; 2020 May; 124(17):173602. PubMed ID: 32412253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully guided and phase locked Ti:PPLN waveguide squeezing for applications in quantum sensing.
    Domeneguetti R; Stefszky M; Herrmann H; Silberhorn C; Andersen UL; Neergaard-Nielsen JS; Gehring T
    Opt Lett; 2023 Jun; 48(11):2999-3002. PubMed ID: 37262265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.