These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31878572)

  • 21. Holographic curved waveguide combiner for HUD/AR with 1-D pupil expansion.
    Draper CT; Blanche PA
    Opt Express; 2022 Jan; 30(2):2503-2516. PubMed ID: 35209388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uniformity improvement of a reconstructed-holographic image in a near-eye display system using off-axis HOE.
    Hwang L; Hur G; Kim J; Gentet P; Kwon S; Lee S
    Opt Express; 2022 Jun; 30(12):21439-21454. PubMed ID: 36224863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extending eyebox with tunable viewpoints for see-through near-eye display.
    Shi X; Liu J; Zhang Z; Zhao Z; Zhang S
    Opt Express; 2021 Apr; 29(8):11613-11626. PubMed ID: 33984938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design method of an ultra-thin two-dimensional geometrical waveguide near-eye display based on forward-ray-tracing and maximum FOV analysis.
    Ruan N; Shi F; Tian Y; Xing P; Zhang W; Qiao S
    Opt Express; 2023 Oct; 31(21):33799-33814. PubMed ID: 37859152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High Resolution Multiview Holographic Display Based on the Holographic Optical Element.
    Qin X; Sang X; Li H; Xiao R; Zhong C; Yan B; Sun Z; Dong Y
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677208
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous multi-channel near-eye display: a holographic retinal projection display with large information content.
    Wang Z; Tu K; Pang Y; Zhang X; Lv G; Feng Q; Wang A; Ming H
    Opt Lett; 2022 Aug; 47(15):3876-3879. PubMed ID: 35913345
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Holographic near-eye display system with large viewing area based on liquid crystal axicon.
    Zheng YW; Wang D; Li YL; Li NN; Wang QH
    Opt Express; 2022 Sep; 30(19):34106-34116. PubMed ID: 36242431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiplane holographic augmented reality head-up display with a real-virtual dual mode and large eyebox.
    Lv Z; Xu Y; Yang Y; Liu J
    Appl Opt; 2022 Nov; 61(33):9962-9971. PubMed ID: 36606828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical see-through Maxwellian near-to-eye display with an enlarged eyebox.
    Kim SB; Park JH
    Opt Lett; 2018 Feb; 43(4):767-770. PubMed ID: 29443989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metalens Eyepiece for 3D Holographic Near-Eye Display.
    Wang C; Yu Z; Zhang Q; Sun Y; Tao C; Wu F; Zheng Z
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality.
    Hong K; Yeom J; Jang C; Hong J; Lee B
    Opt Lett; 2014 Jan; 39(1):127-30. PubMed ID: 24365839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient evaluation of a three-dimensional eye-box in a near-eye display using light-field acquisition of luminance distribution.
    Yeom J; Lim S; Yang Y; Son Y; Choi KS
    Opt Express; 2023 May; 31(11):17304-17320. PubMed ID: 37381468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aberration-corrected full-color holographic augmented reality near-eye display using a Pancharatnam-Berry phase lens.
    Nam SW; Moon S; Lee B; Kim D; Lee S; Lee CK; Lee B
    Opt Express; 2020 Oct; 28(21):30836-30850. PubMed ID: 33115076
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced see-through near-eye display using time-division multiplexing of a Maxwellian-view and holographic display.
    Lee JS; Kim YK; Lee MY; Won YH
    Opt Express; 2019 Jan; 27(2):689-701. PubMed ID: 30696151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Compact design for optical-see-through holographic displays employing holographic optical elements.
    Zhou P; Li Y; Liu S; Su Y
    Opt Express; 2018 Sep; 26(18):22866-22876. PubMed ID: 30184944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual-focal waveguide see-through near-eye display with polarization-dependent lenses.
    Yoo C; Bang K; Jang C; Kim D; Lee CK; Sung G; Lee HS; Lee B
    Opt Lett; 2019 Apr; 44(8):1920-1923. PubMed ID: 30985775
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated holographic waveguide display system with a common optical path for visible and infrared light.
    Lv Z; Liu J; Xiao J; Kuang Y
    Opt Express; 2018 Dec; 26(25):32802-32811. PubMed ID: 30645442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pixelated volume holographic optical element for augmented reality 3D display.
    Lu F; Hua J; Zhou F; Xia Z; Li R; Chen L; Qiao W
    Opt Express; 2022 May; 30(10):15929-15938. PubMed ID: 36221447
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm.
    Sun P; Chang S; Liu S; Tao X; Wang C; Zheng Z
    Opt Express; 2018 Apr; 26(8):10140-10151. PubMed ID: 29715954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Doubling the FOV of AR displays with a liquid crystal polarization-dependent combiner.
    Yin K; He Z; Li K; Wu ST
    Opt Express; 2021 Apr; 29(8):11512-11519. PubMed ID: 33984928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.