These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31878743)

  • 1. Accelerated key generation and distribution using polarization scrambling in optical fiber.
    Hajomer AAE; Zhang L; Yang X; Hu W
    Opt Express; 2019 Nov; 27(24):35761-35773. PubMed ID: 31878743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Error-free secure key generation and distribution using dynamic Stokes parameters.
    Zhang L; Hajomer AAE; Yang X; Hu W
    Opt Express; 2019 Sep; 27(20):29207-29216. PubMed ID: 31684658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 10 Gb/s physical-layer key distribution in fiber using amplified spontaneous emission.
    Huang X; Zhang L; Chai Z; Shen Z; Wu Q; Hu W; Yang X
    Opt Lett; 2023 Feb; 48(3):586-589. PubMed ID: 36723537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secure key generation and distribution scheme based on historical fiber channel state information with LSTM.
    Wang D; Wang H; Ji Y
    Opt Express; 2024 Jan; 32(2):1391-1405. PubMed ID: 38297692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Point to multi-point physical-layer key generation and distribution in passive optical networks.
    Zhang L; Huang X; Hu W; Yang X
    Opt Lett; 2021 Jul; 46(13):3223-3226. PubMed ID: 34197421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secure key generation and distribution scheme based on two independent local polarization scramblers.
    Huang P; Song Q; Peng H; Huang J; Wu H; Xiao Q; Jia B
    Appl Opt; 2021 Jan; 60(1):147-154. PubMed ID: 33362082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical-layer encryption and authentication scheme based on SKGD and 4D hyper-chaos.
    Wang D; Wang H; Xu H; Ji Y
    Opt Express; 2023 Mar; 31(7):11829-11845. PubMed ID: 37155810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed secure key distribution using local polarization modulation driven by optical chaos in reciprocal fiber channel.
    Shao W; Cheng M; Deng L; Yang Q; Dai X; Liu D
    Opt Lett; 2021 Dec; 46(23):5910-5913. PubMed ID: 34851921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated secure key distribution based on localized and asymmetric fiber interferometers.
    Huang C; Ma PY; Blow EC; Mittal P; Prucnal PR
    Opt Express; 2019 Oct; 27(22):32096-32110. PubMed ID: 31684428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental demonstration of 17.5 Gb/s physical layer key distribution over 100 km fiber link based on channel physical intrinsic property and polarization reciprocity.
    Qiu T; Deng L; Yang Q; Dai X; Liu D; Cheng M
    Opt Lett; 2024 Apr; 49(8):2001-2004. PubMed ID: 38621061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visibility properties of the interferometric optical fiber sensors using polarization scrambling.
    Lin H; Yao Q; Ma L; Hu Y; Hu Z
    Appl Opt; 2012 Nov; 51(33):7982-6. PubMed ID: 23207308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-speed secure key distribution based on interference spectrum-shift keying with signal mutual modulation in commonly driven chaos synchronization.
    Deng Z; Gao X; An Y; Wang A; Fu S; Wang Y; Yuwen Q; Gao Z
    Opt Express; 2023 Dec; 31(25):42449-42463. PubMed ID: 38087619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secure key distribution based on the polarization reciprocity of fiber and a coherent reception architecture.
    Qiu T; Shao W; Deng L; Yang Q; Liu D; Yu Y; Gao X; Cheng M
    Opt Lett; 2023 Jul; 48(13):3547-3550. PubMed ID: 37390177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel scheme for achieving quasi-uniform rate polarization scrambling at 752 krad/s.
    Yao L; Huang H; Chen J; Tan E; Willner A
    Opt Express; 2012 Jan; 20(2):1691-9. PubMed ID: 22274511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference.
    Gleim AV; Egorov VI; Nazarov YV; Smirnov SV; Chistyakov VV; Bannik OI; Anisimov AA; Kynev SM; Ivanova AE; Collins RJ; Kozlov SA; Buller GS
    Opt Express; 2016 Feb; 24(3):2619-33. PubMed ID: 26906834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental demonstration of error-free key distribution without an external random source or device over a 300-km optical fiber.
    Zhu K; Zhang J; Li Y; Wang W; Liu X; Zhao Y
    Opt Lett; 2022 May; 47(10):2570-2573. PubMed ID: 35561403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable secure key distribution scheme via orthogonal polarizations and a joint source-channel model.
    Shao W; Qiu T; Deng L; Yang Q; Dai X; Liu D; Cheng M
    Opt Lett; 2022 Dec; 47(23):6125-6128. PubMed ID: 37219188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 300 km fiber channel mapping using neural networks for Gb/s physical-layer key distribution.
    Huang X; Peng X; Zhang L; Hu W; Yang X
    Opt Lett; 2024 Jan; 49(2):230-233. PubMed ID: 38194535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical-enhanced secure strategy in an OFDM-PON.
    Zhang L; Xin X; Liu B; Yu J
    Opt Express; 2012 Jan; 20(3):2255-65. PubMed ID: 22330465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing.
    Xie S; Pang M; Bao X; Chen L
    Opt Express; 2012 Mar; 20(6):6385-99. PubMed ID: 22418520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.