These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31878747)

  • 1. DeepCubeNet: reconstruction of spectrally compressive sensed hyperspectral images with deep neural networks.
    Gedalin D; Oiknine Y; Stern A
    Opt Express; 2019 Nov; 27(24):35811-35822. PubMed ID: 31878747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive Sensing Hyperspectral Imaging by Spectral Multiplexing with Liquid Crystal.
    Oiknine Y; August I; Farber V; Gedalin D; Stern A
    J Imaging; 2018 Dec; 5(1):. PubMed ID: 34470182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint segmentation and reconstruction of hyperspectral data with compressed measurements.
    Zhang Q; Plemmons R; Kittle D; Brady D; Prasad S
    Appl Opt; 2011 Aug; 50(22):4417-35. PubMed ID: 21833118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of a Real-Time Embedded Hyperspectral Compressive Sensing Imaging System.
    Lim O; Mancini S; Dalla Mura M
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressive hyperspectral image classification using a 3D coded convolutional neural network.
    Zhang H; Ma X; Zhao X; Arce GR
    Opt Express; 2021 Oct; 29(21):32875-32891. PubMed ID: 34809110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compressive spectral imaging system for soil classification with three-dimensional convolutional neural network.
    Yu Y; Xu T; Shen Z; Zhang Y; Wang X
    Opt Express; 2019 Aug; 27(16):23029-23048. PubMed ID: 31510586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cascaded Convolutional Neural Network-Based Hyperspectral Image Resolution Enhancement via an Auxiliary Panchromatic Image.
    Lu X; Zhang J; Yang D; Xu L; Jia F
    IEEE Trans Image Process; 2021; 30():6815-6828. PubMed ID: 34310305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced deep unrolling networks for snapshot compressive hyperspectral imaging.
    Qin X; Quan Y; Ji H
    Neural Netw; 2024 Jun; 174():106250. PubMed ID: 38531122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMP-Net: Denoising-Based Deep Unfolding for Compressive Image Sensing.
    Zhang Z; Liu Y; Liu J; Wen F; Zhu C
    IEEE Trans Image Process; 2021; 30():1487-1500. PubMed ID: 33338019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-Channel Switchable Metasurface Filters for Compact Spectral Imaging with Deep Compressive Reconstruction.
    Wang C; Liu X; Zhang Y; Sun Y; Yu Z; Zheng Z
    Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HSGAN: Hyperspectral Reconstruction From RGB Images With Generative Adversarial Network.
    Zhao Y; Po LM; Lin T; Yan Q; Liu W; Xian P
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; PP():. PubMed ID: 37561623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TransCS: A Transformer-Based Hybrid Architecture for Image Compressed Sensing.
    Shen M; Gan H; Ning C; Hua Y; Zhang T
    IEEE Trans Image Process; 2022; 31():6991-7005. PubMed ID: 36318549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green Compressive Sampling Reconstruction in IoT Networks.
    Colonnese S; Biagi M; Cattai T; Cusani R; De Vico Fallani F; Scarano G
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30127298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning Deep Hierarchical Spatial-Spectral Features for Hyperspectral Image Classification Based on Residual 3D-2D CNN.
    Feng F; Wang S; Wang C; Zhang J
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image Compressed Sensing using Convolutional Neural Network.
    Shi W; Jiang F; Liu S; Zhao D
    IEEE Trans Image Process; 2019 Jul; ():. PubMed ID: 31331892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperspectral Pansharpening With Deep Priors.
    Xie W; Lei J; Cui Y; Li Y; Du Q
    IEEE Trans Neural Netw Learn Syst; 2020 May; 31(5):1529-1543. PubMed ID: 31265415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Net-FLICS: fast quantitative wide-field fluorescence lifetime imaging with compressed sensing - a deep learning approach.
    Yao R; Ochoa M; Yan P; Intes X
    Light Sci Appl; 2019; 8():26. PubMed ID: 30854198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recurrent Neural Networks for Snapshot Compressive Imaging.
    Cheng Z; Chen B; Lu R; Wang Z; Zhang H; Meng Z; Yuan X
    IEEE Trans Pattern Anal Mach Intell; 2023 Feb; 45(2):2264-2281. PubMed ID: 35324434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressed Sensing: From Research to Clinical Practice with Deep Neural Networks.
    Sandino CM; Cheng JY; Chen F; Mardani M; Pauly JM; Vasanawala SS
    IEEE Signal Process Mag; 2020 Jan; 37(1):111-127. PubMed ID: 33192036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-aperture snapshot compressive hyperspectral camera.
    Oiknine Y; August I; Stern A
    Opt Lett; 2018 Oct; 43(20):5042-5045. PubMed ID: 30320814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.