These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31878747)

  • 21. Improving resolution of MR images with an adversarial network incorporating images with different contrast.
    Kim KH; Do WJ; Park SH
    Med Phys; 2018 Jul; 45(7):3120-3131. PubMed ID: 29729006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Image Reconstruction Using Matched Wavelet Estimated From Data Sensed Compressively Using Partial Canonical Identity Matrix.
    Ansari N; Gupta A
    IEEE Trans Image Process; 2017 Aug; 26(8):3680-3695. PubMed ID: 28475052
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder.
    August I; Oiknine Y; AbuLeil M; Abdulhalim I; Stern A
    Sci Rep; 2016 Mar; 6():23524. PubMed ID: 27004447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compressed Sensing MRI Reconstruction Using a Generative Adversarial Network With a Cyclic Loss.
    Quan TM; Nguyen-Duc T; Jeong WK
    IEEE Trans Med Imaging; 2018 Jun; 37(6):1488-1497. PubMed ID: 29870376
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generalized Tensor Summation Compressive Sensing Network (GTSNET): An Easy to Learn Compressive Sensing Operation.
    Yamac M; Akpinar U; Sahin E; Kiranyaz S; Gabbouj M
    IEEE Trans Image Process; 2023; 32():5637-5651. PubMed ID: 37773907
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.
    Kang E; Min J; Ye JC
    Med Phys; 2017 Oct; 44(10):e360-e375. PubMed ID: 29027238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scaling-Based Two-Step Reconstruction in Full Polarization-Compressed Hyperspectral Imaging.
    Fan A; Xu T; Wang X; Xu C; Zhang Y
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322543
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compressive Sensing Spectroscopy Using a Residual Convolutional Neural Network.
    Kim C; Park D; Lee HN
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31973148
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temporal compressive imaging reconstruction based on a 3D-CNN network.
    Zhang L; Lam EY; Ke J
    Opt Express; 2022 Jan; 30(3):3577-3591. PubMed ID: 35209612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Along-track scanning using a liquid crystal compressive hyperspectral imager.
    Oiknine Y; August I; Stern A
    Opt Express; 2016 Apr; 24(8):8446-57. PubMed ID: 27137283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prior data assisted compressed sensing: a novel MR imaging strategy for real time tracking of lung tumors.
    Yip E; Yun J; Wachowicz K; Heikal AA; Gabos Z; Rathee S; Fallone BG
    Med Phys; 2014 Aug; 41(8):082301. PubMed ID: 25086550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptive Grouping Distributed Compressive Sensing Reconstruction of Plant Hyperspectral Data.
    Xu P; Liu J; Xue L; Zhang J; Qiu B
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28590433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single pixel hyperspectral bioluminescence tomography based on compressive sensing.
    Bentley A; Rowe JE; Dehghani H
    Biomed Opt Express; 2019 Nov; 10(11):5549-5564. PubMed ID: 31799030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A compressive hyperspectral video imaging system using a single-pixel detector.
    Xu Y; Lu L; Saragadam V; Kelly KF
    Nat Commun; 2024 Feb; 15(1):1456. PubMed ID: 38368402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep-learning-based single-photon-counting compressive imaging via jointly trained subpixel convolution sampling.
    Li WC; Yan QR; Guan YQ; Yang ST; Peng C; Fang ZY
    Appl Opt; 2020 Aug; 59(23):6828-6837. PubMed ID: 32788773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single photon counting compressive imaging using a generative model optimized via sampling and transfer learning.
    Gao W; Yan QR; Zhou HL; Yang ST; Fang ZY; Wang YH
    Opt Express; 2021 Feb; 29(4):5552-5566. PubMed ID: 33726090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep Sensing for Compressive Video Acquisition.
    Yoshida M; Torii A; Okutomi M; Taniguchi RI; Nagahara H; Yagi Y
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive Nonlocal Sparse Representation for Dual-Camera Compressive Hyperspectral Imaging.
    Wang L; Xiong Z; Shi G; Wu F; Zeng W
    IEEE Trans Pattern Anal Mach Intell; 2017 Oct; 39(10):2104-2111. PubMed ID: 28113743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Respiratory motion correction for free-breathing 3D abdominal MRI using CNN-based image registration: a feasibility study.
    Lv J; Yang M; Zhang J; Wang X
    Br J Radiol; 2018 Feb; 91(1083):20170788. PubMed ID: 29261334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. IEF-CSNET: Information Enhancement and Fusion Network for Compressed Sensing Reconstruction.
    Zhou Z; Liu F; Shen H
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.