These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31878878)

  • 1. Integrated analyses of miRNAome and transcriptome reveal zinc deficiency responses in rice seedlings.
    Zeng H; Zhang X; Ding M; Zhu Y
    BMC Plant Biol; 2019 Dec; 19(1):585. PubMed ID: 31878878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morpho-physiological and transcriptome profiling reveal novel zinc deficiency-responsive genes in rice.
    Bandyopadhyay T; Mehra P; Hairat S; Giri J
    Funct Integr Genomics; 2017 Sep; 17(5):565-581. PubMed ID: 28293806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated analysis of miRNA and mRNA expression profiles in response to Cd exposure in rice seedlings.
    Tang M; Mao D; Xu L; Li D; Song S; Chen C
    BMC Genomics; 2014 Oct; 15(1):835. PubMed ID: 25273267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptome profile analysis of rice varieties with different tolerance to zinc deficiency.
    Lu X; Liu S; Zhi S; Chen J; Ye G
    Plant Biol (Stuttg); 2021 Mar; 23(2):375-390. PubMed ID: 33296551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies.
    Shin SY; Jeong JS; Lim JY; Kim T; Park JH; Kim JK; Shin C
    BMC Genomics; 2018 Jul; 19(1):532. PubMed ID: 30005603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.).
    Deng QW; Luo XD; Chen YL; Zhou Y; Zhang FT; Hu BL; Xie JK
    Biol Res; 2018 Mar; 51(1):7. PubMed ID: 29544529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity.
    Widodo B; Broadley MR; Rose T; Frei M; Pariasca-Tanaka J; Yoshihashi T; Thomson M; Hammond JP; Aprile A; Close TJ; Ismail AM; Wissuwa M
    New Phytol; 2010 Apr; 186(2):400-14. PubMed ID: 20100202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage.
    Cheah BH; Nadarajah K; Divate MD; Wickneswari R
    BMC Genomics; 2015 Sep; 16(1):692. PubMed ID: 26369665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.).
    Zhou Y; Yang P; Cui F; Zhang F; Luo X; Xie J
    PLoS One; 2016; 11(1):e0146242. PubMed ID: 26752408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated RNA-Seq Analysis and Meta-QTLs Mapping Provide Insights into Cold Stress Response in Rice Seedling Roots.
    Kong W; Zhang C; Qiang Y; Zhong H; Zhao G; Li Y
    Int J Mol Sci; 2020 Jun; 21(13):. PubMed ID: 32610550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation through MicroRNAs in Response to Low-Energy N
    Li Y; Wang W; Wang T; Wouters MA; Yin Y; Jiao Z; Ma L; Zhang F
    Radiat Res; 2019 Feb; 191(2):189-200. PubMed ID: 30499385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transcription factor OsbZIP48 governs rice responses to zinc deficiency.
    Hu S; Du B; Mu G; Jiang Z; Li H; Song Y; Zhang B; Xia J; Rouached H; Zheng L
    Plant Cell Environ; 2024 May; 47(5):1526-1542. PubMed ID: 38251320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Sequencing Discovery and Profiling of Known and Novel miRNAs Produced in Response to DNA Damage in Rice.
    Zhang J; Xu C; Liu K; Li Y; Wang M; Tao L; Yu H; Zhang C
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of contrasting rice (Oryza sativa L.) genotypes reveals the Pi-efficient schema for phosphate starvation tolerance.
    Kumar S; Pallavi ; Chugh C; Seem K; Kumar S; Vinod KK; Mohapatra T
    BMC Plant Biol; 2021 Jun; 21(1):282. PubMed ID: 34154533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial-temporal analysis of zinc homeostasis reveals the response mechanisms to acute zinc deficiency in Sorghum bicolor.
    Li Y; Zhang Y; Shi D; Liu X; Qin J; Ge Q; Xu L; Pan X; Li W; Zhu Y; Xu J
    New Phytol; 2013 Dec; 200(4):1102-15. PubMed ID: 23915383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc deficiency differentially affects redox homeostasis of rice genotypes contrasting in ascorbate level.
    Höller S; Meyer A; Frei M
    J Plant Physiol; 2014 Nov; 171(18):1748-56. PubMed ID: 25238655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and analysis of seven H₂O₂-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica).
    Li T; Li H; Zhang YX; Liu JY
    Nucleic Acids Res; 2011 Apr; 39(7):2821-33. PubMed ID: 21113019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological responses and small RNAs changes in maize under nitrogen deficiency and resupply.
    Yang Z; Wang Z; Yang C; Yang Z; Li H; Wu Y
    Genes Genomics; 2019 Oct; 41(10):1183-1194. PubMed ID: 31313105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of stress response and tolerance based on transcriptome profiling of rice crown tissue under zinc deficiency.
    Nanda AK; Pujol V; Wissuwa M
    J Exp Bot; 2017 Mar; 68(7):1715-1729. PubMed ID: 28369468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome profiles of soybean leaves and roots in response to zinc deficiency.
    Zeng H; Zhang X; Ding M; Zhang X; Zhu Y
    Physiol Plant; 2019 Nov; 167(3):330-351. PubMed ID: 30536844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.