BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 31878885)

  • 1. Network analysis exposes core functions in major lifestyles of fungal and oomycete plant pathogens.
    Pandaranayaka EP; Frenkel O; Elad Y; Prusky D; Harel A
    BMC Genomics; 2019 Dec; 20(1):1020. PubMed ID: 31878885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The unique architecture and function of cellulose-interacting proteins in oomycetes revealed by genomic and structural analyses.
    Larroque M; Barriot R; Bottin A; Barre A; Rougé P; Dumas B; Gaulin E
    BMC Genomics; 2012 Nov; 13():605. PubMed ID: 23140525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Genomics Including the Early-Diverging Smut Fungus Ceraceosorus bombacis Reveals Signatures of Parallel Evolution within Plant and Animal Pathogens of Fungi and Oomycetes.
    Sharma R; Xia X; Riess K; Bauer R; Thines M
    Genome Biol Evol; 2015 Aug; 7(9):2781-98. PubMed ID: 26314305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population Genomics of Fungal and Oomycete Pathogens.
    Grünwald NJ; McDonald BA; Milgroom MG
    Annu Rev Phytopathol; 2016 Aug; 54():323-46. PubMed ID: 27296138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms.
    Richards TA; Dacks JB; Jenkinson JM; Thornton CR; Talbot NJ
    Curr Biol; 2006 Sep; 16(18):1857-64. PubMed ID: 16979565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analyses of saprotrophy in Salisapilia sapeloensis and diverse plant pathogenic oomycetes reveal lifestyle-specific gene expression.
    de Vries S; de Vries J; Archibald JM; Slamovits CH
    FEMS Microbiol Ecol; 2020 Oct; 96(11):. PubMed ID: 32918444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genomics of obligate (and nonobligate) biotrophs.
    Spanu PD
    Annu Rev Phytopathol; 2012; 50():91-109. PubMed ID: 22559067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.
    Zhao Z; Liu H; Wang C; Xu JR
    BMC Genomics; 2014 Jan; 15():6. PubMed ID: 24422981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broad-specificity GH131 β-glucanases are a hallmark of fungi and oomycetes that colonize plants.
    Anasontzis GE; Lebrun MH; Haon M; Champion C; Kohler A; Lenfant N; Martin F; O'Connell RJ; Riley R; Grigoriev IV; Henrissat B; Berrin JG; Rosso MN
    Environ Microbiol; 2019 Aug; 21(8):2724-2739. PubMed ID: 30887618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens.
    Ellis JG; Rafiqi M; Gan P; Chakrabarti A; Dodds PN
    Curr Opin Plant Biol; 2009 Aug; 12(4):399-405. PubMed ID: 19540152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fungal plant cell wall-degrading enzyme database: a platform for comparative and evolutionary genomics in fungi and Oomycetes.
    Choi J; Kim KT; Jeon J; Lee YH
    BMC Genomics; 2013; 14 Suppl 5(Suppl 5):S7. PubMed ID: 24564786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.
    Zhao Z; Liu H; Wang C; Xu JR
    BMC Genomics; 2013 Apr; 14():274. PubMed ID: 23617724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Obligate biotroph parasitism: can we link genomes to lifestyles?
    Kemen E; Jones JD
    Trends Plant Sci; 2012 Aug; 17(8):448-57. PubMed ID: 22613788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms and evolution of virulence in oomycetes.
    Jiang RH; Tyler BM
    Annu Rev Phytopathol; 2012; 50():295-318. PubMed ID: 22920560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Progress in RXLR Effector Research.
    Anderson RG; Deb D; Fedkenheuer K; McDowell JM
    Mol Plant Microbe Interact; 2015 Oct; 28(10):1063-72. PubMed ID: 26125490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide signalling in plant interactions with pathogenic fungi and oomycetes.
    Jedelská T; Luhová L; Petřivalský M
    J Exp Bot; 2021 Feb; 72(3):848-863. PubMed ID: 33367760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effectors of biotrophic fungi and oomycetes: pathogenicity factors and triggers of host resistance.
    Dodds PN; Rafiqi M; Gan PHP; Hardham AR; Jones DA; Ellis JG
    New Phytol; 2009; 183(4):993-1000. PubMed ID: 19558422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes.
    Adhikari BN; Hamilton JP; Zerillo MM; Tisserat N; Lévesque CA; Buell CR
    PLoS One; 2013; 8(10):e75072. PubMed ID: 24124466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and analysis of the secretome of plant pathogenic fungi reveals lifestyle adaptation.
    Jia M; Gong X; Fan M; Liu H; Zhou H; Gu S; Liu Y; Dong J
    Front Microbiol; 2023; 14():1171618. PubMed ID: 37152749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fungal effectors and plant susceptibility.
    Lo Presti L; Lanver D; Schweizer G; Tanaka S; Liang L; Tollot M; Zuccaro A; Reissmann S; Kahmann R
    Annu Rev Plant Biol; 2015; 66():513-45. PubMed ID: 25923844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.