These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31879099)

  • 1. Acidogenesis is a key step in the anaerobic biotransformation of organic micropollutants.
    Carneiro RB; Gonzalez-Gil L; Londoño YA; Zaiat M; Carballa M; Lema JM
    J Hazard Mater; 2020 May; 389():121888. PubMed ID: 31879099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of methanogenesis on the biotransformation of organic micropollutants during anaerobic digestion.
    Gonzalez-Gil L; Mauricio-Iglesias M; Serrano D; Lema JM; Carballa M
    Sci Total Environ; 2018 May; 622-623():459-466. PubMed ID: 29220770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of organic micropollutants by anaerobic sludge enzymes.
    Gonzalez-Gil L; Krah D; Ghattas AK; Carballa M; Wick A; Helmholz L; Lema JM; Ternes TA
    Water Res; 2019 Apr; 152():202-214. PubMed ID: 30669042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal hydrolysis of sewage sludge partially removes organic micropollutants but does not enhance their anaerobic biotransformation.
    Taboada-Santos A; Braz GHR; Fernandez-Gonzalez N; Carballa M; Lema JM
    Sci Total Environ; 2019 Nov; 690():534-542. PubMed ID: 31301494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why are organic micropollutants not fully biotransformed? A mechanistic modelling approach to anaerobic systems.
    Gonzalez-Gil L; Mauricio-Iglesias M; Carballa M; Lema JM
    Water Res; 2018 Oct; 142():115-128. PubMed ID: 29864647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cometabolic Enzymatic Transformation of Organic Micropollutants under Methanogenic Conditions.
    Gonzalez-Gil L; Carballa M; Lema JM
    Environ Sci Technol; 2017 Mar; 51(5):2963-2971. PubMed ID: 28198617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling cometabolic biotransformation of organic micropollutants in nitrifying reactors.
    Fernandez-Fontaina E; Carballa M; Omil F; Lema JM
    Water Res; 2014 Nov; 65():371-83. PubMed ID: 25150522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversibility of enzymatic reactions might limit biotransformation of organic micropollutants.
    Gonzalez-Gil L; Carballa M; Corvini PF; Lema JM
    Sci Total Environ; 2019 May; 665():574-578. PubMed ID: 30776629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems.
    Paredes L; Fernandez-Fontaina E; Lema JM; Omil F; Carballa M
    Sci Total Environ; 2016 May; 551-552():640-8. PubMed ID: 26897407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochar enhances the biotransformation of organic micropollutants (OMPs) in an anaerobic membrane bioreactor treating sewage.
    Lei Z; Zhang S; Wang L; Li Q; Li YY; Wang XC; Chen R
    Water Res; 2022 Sep; 223():118974. PubMed ID: 35988338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic cometabolic biotransformation of organic micropollutants in wastewater treatment plants: A review.
    Kennes-Veiga DM; Gónzalez-Gil L; Carballa M; Lema JM
    Bioresour Technol; 2022 Jan; 344(Pt B):126291. PubMed ID: 34752884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A UASB reactor coupled to a hybrid aerobic MBR as innovative plant configuration to enhance the removal of organic micropollutants.
    Alvarino T; Suárez S; Garrido M; Lema JM; Omil F
    Chemosphere; 2016 Feb; 144():452-8. PubMed ID: 26386770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The organic loading rate affects organic micropollutants' cometabolic biotransformation kinetics under heterotrophic conditions in activated sludge.
    Kennes-Veiga DM; Gonzalez-Gil L; Carballa M; Lema JM
    Water Res; 2021 Feb; 189():116587. PubMed ID: 33188990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An innovative wastewater treatment technology based on UASB and IFAS for cost-efficient macro and micropollutant removal.
    Arias A; Alvarino T; Allegue T; Suárez S; Garrido JM; Omil F
    J Hazard Mater; 2018 Oct; 359():113-120. PubMed ID: 30014906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microaeration improves the removal/biotransformation of organic micropollutants in anaerobic wastewater treatment systems.
    do Nascimento JGDS; Silva EVA; Dos Santos AB; da Silva MER; Firmino PIM
    Environ Res; 2021 Jul; 198():111313. PubMed ID: 33991572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of selected organic substrates to the anaerobic cometabolism of sulfamethazine.
    Oliveira BM; Zaiat M; Oliveira GHD
    J Environ Sci Health B; 2019; 54(4):263-270. PubMed ID: 30628525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of metabolism and microbiology on organic micropollutants biotransformation in anoxic heterotrophic reactors.
    Martínez-Quintela M; Balboa S; Coves JR; Omil F; Suárez S
    J Hazard Mater; 2023 Jan; 442():129983. PubMed ID: 36193613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterotrophic enzymatic biotransformations of organic micropollutants in activated sludge.
    Kennes-Veiga DM; Vogler B; Fenner K; Carballa M; Lema JM
    Sci Total Environ; 2021 Aug; 780():146564. PubMed ID: 33774287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of temperature on the hydrolysis, acidogenesis and methanogenesis in mesophilic anaerobic digestion: parameter identification and modeling application.
    Donoso-Bravo A; Retamal C; Carballa M; Ruiz-Filippi G; Chamy R
    Water Sci Technol; 2009; 60(1):9-17. PubMed ID: 19587397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.