These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 31879189)
1. Rhodopsin Genomic Loci DNA Nanoparticles Improve Expression and Rescue of Retinal Degeneration in a Model for Retinitis Pigmentosa. Zheng M; Mitra RN; Weiss ER; Han Z Mol Ther; 2020 Feb; 28(2):523-535. PubMed ID: 31879189 [TBL] [Abstract][Full Text] [Related]
2. Genomic DNA nanoparticles rescue rhodopsin-associated retinitis pigmentosa phenotype. Han Z; Banworth MJ; Makkia R; Conley SM; Al-Ubaidi MR; Cooper MJ; Naash MI FASEB J; 2015 Jun; 29(6):2535-44. PubMed ID: 25713057 [TBL] [Abstract][Full Text] [Related]
3. Nanoparticle-mediated rhodopsin cDNA but not intron-containing DNA delivery causes transgene silencing in a rhodopsin knockout model. Zheng M; Mitra RN; Filonov NA; Han Z FASEB J; 2016 Mar; 30(3):1076-86. PubMed ID: 26564956 [TBL] [Abstract][Full Text] [Related]
4. Genomic form of rhodopsin DNA nanoparticles rescued autosomal dominant Retinitis pigmentosa in the P23H knock-in mouse model. Mitra RN; Zheng M; Weiss ER; Han Z Biomaterials; 2018 Mar; 157():26-39. PubMed ID: 29232624 [TBL] [Abstract][Full Text] [Related]
5. Mutation-independent rescue of a novel mouse model of Retinitis Pigmentosa. Greenwald DL; Cashman SM; Kumar-Singh R Gene Ther; 2013 Apr; 20(4):425-34. PubMed ID: 22809998 [TBL] [Abstract][Full Text] [Related]
6. Structural and functional rescue of murine rod photoreceptors by human rhodopsin transgene. McNally N; Kenna P; Humphries MM; Hobson AH; Khan NW; Bush RA; Sieving PA; Humphries P; Farrar GJ Hum Mol Genet; 1999 Jul; 8(7):1309-12. PubMed ID: 10369877 [TBL] [Abstract][Full Text] [Related]
7. Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa. Tam BM; Moritz OL Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3234-41. PubMed ID: 16877386 [TBL] [Abstract][Full Text] [Related]
8. Gene augmentation for autosomal dominant retinitis pigmentosa using rhodopsin genomic loci nanoparticles in the P23H Sp S; Mitra RN; Zheng M; Chrispell JD; Wang K; Kwon YS; Weiss ER; Han Z Gene Ther; 2023 Aug; 30(7-8):628-640. PubMed ID: 36935427 [TBL] [Abstract][Full Text] [Related]
9. Mutant rhodopsin transgene expression on a null background. Frederick JM; Krasnoperova NV; Hoffmann K; Church-Kopish J; Rüther K; Howes K; Lem J; Baehr W Invest Ophthalmol Vis Sci; 2001 Mar; 42(3):826-33. PubMed ID: 11222546 [TBL] [Abstract][Full Text] [Related]
10. Adenovirus-mediated delivery of rhodopsin-promoted bcl-2 results in a delay in photoreceptor cell death in the rd/rd mouse. Bennett J; Zeng Y; Bajwa R; Klatt L; Li Y; Maguire AM Gene Ther; 1998 Sep; 5(9):1156-64. PubMed ID: 9930315 [TBL] [Abstract][Full Text] [Related]
11. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Koch S; Sothilingam V; Garcia Garrido M; Tanimoto N; Becirovic E; Koch F; Seide C; Beck SC; Seeliger MW; Biel M; Mühlfriedel R; Michalakis S Hum Mol Genet; 2012 Oct; 21(20):4486-96. PubMed ID: 22802073 [TBL] [Abstract][Full Text] [Related]
12. Recent insights into the mechanisms underlying light-dependent retinal degeneration from X. laevis models of retinitis pigmentosa. Moritz OL; Tam BM Adv Exp Med Biol; 2010; 664():509-15. PubMed ID: 20238053 [TBL] [Abstract][Full Text] [Related]
13. ER stress in retinal degeneration: a target for rational therapy? Griciuc A; Aron L; Ueffing M Trends Mol Med; 2011 Aug; 17(8):442-51. PubMed ID: 21620769 [TBL] [Abstract][Full Text] [Related]
14. Transplantation of bone marrow-derived mesenchymal stem cells rescue photoreceptor cells in the dystrophic retina of the rhodopsin knockout mouse. Arnhold S; Absenger Y; Klein H; Addicks K; Schraermeyer U Graefes Arch Clin Exp Ophthalmol; 2007 Mar; 245(3):414-22. PubMed ID: 16896916 [TBL] [Abstract][Full Text] [Related]
15. Knockout and Replacement Gene Surgery to Treat Rhodopsin-Mediated Autosomal Dominant Retinitis Pigmentosa. Sun X; Liang C; Chen Y; Cui T; Han J; Dai M; Zhang Y; Zhou Q; Li W Hum Gene Ther; 2024 Mar; 35(5-6):151-162. PubMed ID: 38368562 [TBL] [Abstract][Full Text] [Related]
16. A partial structural and functional rescue of a retinitis pigmentosa model with compacted DNA nanoparticles. Cai X; Nash Z; Conley SM; Fliesler SJ; Cooper MJ; Naash MI PLoS One; 2009; 4(4):e5290. PubMed ID: 19390689 [TBL] [Abstract][Full Text] [Related]
17. Gene delivery of wild-type rhodopsin rescues retinal function in an autosomal dominant retinitis pigmentosa mouse model. Mao H; Gorbatyuk MS; Hauswirth WW; Lewin AS Adv Exp Med Biol; 2012; 723():199-205. PubMed ID: 22183334 [TBL] [Abstract][Full Text] [Related]
18. Repair of rhodopsin mRNA by spliceosome-mediated RNA trans-splicing: a new approach for autosomal dominant retinitis pigmentosa. Berger A; Lorain S; Joséphine C; Desrosiers M; Peccate C; Voit T; Garcia L; Sahel JA; Bemelmans AP Mol Ther; 2015 May; 23(5):918-930. PubMed ID: 25619725 [TBL] [Abstract][Full Text] [Related]
19. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin. Tam BM; Moritz OL J Neurosci; 2007 Aug; 27(34):9043-53. PubMed ID: 17715341 [TBL] [Abstract][Full Text] [Related]
20. Dynamic in vivo quantification of rod photoreceptor degeneration using fluorescent reporter mouse models of retinitis pigmentosa. Orlans HO; Barnard AR; MacLaren RE Exp Eye Res; 2020 Jan; 190():107895. PubMed ID: 31816293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]