BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31879189)

  • 1. Rhodopsin Genomic Loci DNA Nanoparticles Improve Expression and Rescue of Retinal Degeneration in a Model for Retinitis Pigmentosa.
    Zheng M; Mitra RN; Weiss ER; Han Z
    Mol Ther; 2020 Feb; 28(2):523-535. PubMed ID: 31879189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic DNA nanoparticles rescue rhodopsin-associated retinitis pigmentosa phenotype.
    Han Z; Banworth MJ; Makkia R; Conley SM; Al-Ubaidi MR; Cooper MJ; Naash MI
    FASEB J; 2015 Jun; 29(6):2535-44. PubMed ID: 25713057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle-mediated rhodopsin cDNA but not intron-containing DNA delivery causes transgene silencing in a rhodopsin knockout model.
    Zheng M; Mitra RN; Filonov NA; Han Z
    FASEB J; 2016 Mar; 30(3):1076-86. PubMed ID: 26564956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic form of rhodopsin DNA nanoparticles rescued autosomal dominant Retinitis pigmentosa in the P23H knock-in mouse model.
    Mitra RN; Zheng M; Weiss ER; Han Z
    Biomaterials; 2018 Mar; 157():26-39. PubMed ID: 29232624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation-independent rescue of a novel mouse model of Retinitis Pigmentosa.
    Greenwald DL; Cashman SM; Kumar-Singh R
    Gene Ther; 2013 Apr; 20(4):425-34. PubMed ID: 22809998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional rescue of murine rod photoreceptors by human rhodopsin transgene.
    McNally N; Kenna P; Humphries MM; Hobson AH; Khan NW; Bush RA; Sieving PA; Humphries P; Farrar GJ
    Hum Mol Genet; 1999 Jul; 8(7):1309-12. PubMed ID: 10369877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa.
    Tam BM; Moritz OL
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3234-41. PubMed ID: 16877386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene augmentation for autosomal dominant retinitis pigmentosa using rhodopsin genomic loci nanoparticles in the P23H
    Sp S; Mitra RN; Zheng M; Chrispell JD; Wang K; Kwon YS; Weiss ER; Han Z
    Gene Ther; 2023 Aug; 30(7-8):628-640. PubMed ID: 36935427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutant rhodopsin transgene expression on a null background.
    Frederick JM; Krasnoperova NV; Hoffmann K; Church-Kopish J; Rüther K; Howes K; Lem J; Baehr W
    Invest Ophthalmol Vis Sci; 2001 Mar; 42(3):826-33. PubMed ID: 11222546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenovirus-mediated delivery of rhodopsin-promoted bcl-2 results in a delay in photoreceptor cell death in the rd/rd mouse.
    Bennett J; Zeng Y; Bajwa R; Klatt L; Li Y; Maguire AM
    Gene Ther; 1998 Sep; 5(9):1156-64. PubMed ID: 9930315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa.
    Koch S; Sothilingam V; Garcia Garrido M; Tanimoto N; Becirovic E; Koch F; Seide C; Beck SC; Seeliger MW; Biel M; Mühlfriedel R; Michalakis S
    Hum Mol Genet; 2012 Oct; 21(20):4486-96. PubMed ID: 22802073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent insights into the mechanisms underlying light-dependent retinal degeneration from X. laevis models of retinitis pigmentosa.
    Moritz OL; Tam BM
    Adv Exp Med Biol; 2010; 664():509-15. PubMed ID: 20238053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ER stress in retinal degeneration: a target for rational therapy?
    Griciuc A; Aron L; Ueffing M
    Trends Mol Med; 2011 Aug; 17(8):442-51. PubMed ID: 21620769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transplantation of bone marrow-derived mesenchymal stem cells rescue photoreceptor cells in the dystrophic retina of the rhodopsin knockout mouse.
    Arnhold S; Absenger Y; Klein H; Addicks K; Schraermeyer U
    Graefes Arch Clin Exp Ophthalmol; 2007 Mar; 245(3):414-22. PubMed ID: 16896916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knockout and Replacement Gene Surgery to Treat Rhodopsin-Mediated Autosomal Dominant Retinitis Pigmentosa.
    Sun X; Liang C; Chen Y; Cui T; Han J; Dai M; Zhang Y; Zhou Q; Li W
    Hum Gene Ther; 2024 Mar; 35(5-6):151-162. PubMed ID: 38368562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A partial structural and functional rescue of a retinitis pigmentosa model with compacted DNA nanoparticles.
    Cai X; Nash Z; Conley SM; Fliesler SJ; Cooper MJ; Naash MI
    PLoS One; 2009; 4(4):e5290. PubMed ID: 19390689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene delivery of wild-type rhodopsin rescues retinal function in an autosomal dominant retinitis pigmentosa mouse model.
    Mao H; Gorbatyuk MS; Hauswirth WW; Lewin AS
    Adv Exp Med Biol; 2012; 723():199-205. PubMed ID: 22183334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repair of rhodopsin mRNA by spliceosome-mediated RNA trans-splicing: a new approach for autosomal dominant retinitis pigmentosa.
    Berger A; Lorain S; Joséphine C; Desrosiers M; Peccate C; Voit T; Garcia L; Sahel JA; Bemelmans AP
    Mol Ther; 2015 May; 23(5):918-930. PubMed ID: 25619725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin.
    Tam BM; Moritz OL
    J Neurosci; 2007 Aug; 27(34):9043-53. PubMed ID: 17715341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic in vivo quantification of rod photoreceptor degeneration using fluorescent reporter mouse models of retinitis pigmentosa.
    Orlans HO; Barnard AR; MacLaren RE
    Exp Eye Res; 2020 Jan; 190():107895. PubMed ID: 31816293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.