BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31879897)

  • 1. In Vitro Microtubule Dynamics Assays Using Dark-Field Microscopy.
    Spector JO; Vemu A; Roll-Mecak A
    Methods Mol Biol; 2020; 2101():39-51. PubMed ID: 31879897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Reconstitution of Microtubule Dynamics and Severing Imaged by Label-Free Interference-Reflection Microscopy.
    Kuo YW; Howard J
    Methods Mol Biol; 2022; 2430():73-91. PubMed ID: 35476326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free high-speed wide-field imaging of single microtubules using interference reflection microscopy.
    Mahamdeh M; Simmert S; Luchniak A; Schäffer E; Howard J
    J Microsc; 2018 Oct; 272(1):60-66. PubMed ID: 30044498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free Imaging of Microtubules with Sub-nm Precision Using Interferometric Scattering Microscopy.
    Andrecka J; Ortega Arroyo J; Lewis K; Cross RA; Kukura P
    Biophys J; 2016 Jan; 110(1):214-7. PubMed ID: 26745424
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Hirst WG; Kiefer C; Abdosamadi MK; Schäffer E; Reber S
    STAR Protoc; 2020 Dec; 1(3):100177. PubMed ID: 33377071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementation of Interference Reflection Microscopy for Label-free, High-speed Imaging of Microtubules.
    Mahamdeh M; Howard J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Reconstitution Assays of Microtubule Amplification and Lattice Repair by the Microtubule-Severing Enzymes Katanin and Spastin.
    Vemu A; Szczesna E; Roll-Mecak A
    Methods Mol Biol; 2020; 2101():27-38. PubMed ID: 31879896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-Free Imaging of Single Microtubule Dynamics Using Spatial Light Interference Microscopy.
    Kandel ME; Teng KW; Selvin PR; Popescu G
    ACS Nano; 2017 Jan; 11(1):647-655. PubMed ID: 27997798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Interference Reflection and Total Internal Reflection Fluorescence Microscopy for Imaging Dynamic Microtubules and Associated Proteins.
    Tuna Y; Al-Hiyasat A; Howard J
    J Vis Exp; 2022 May; (183):. PubMed ID: 35604180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of dual-color polarity-marked fluorescent microtubule seeds.
    Katsuki M; Muto E; Cross RA
    Methods Mol Biol; 2011; 777():117-26. PubMed ID: 21773925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TUBright: A Peptide Probe for Imaging Microtubules.
    Xie S; Li J; Sun S; Chen W; Cheng H; Song Y; Li Y; Liu M; Zhu X; Liang X; Zhou J
    Anal Chem; 2022 Aug; 94(32):11168-11174. PubMed ID: 35917443
    [No Abstract]   [Full Text] [Related]  

  • 12. Reconstitution of physiological microtubule dynamics using purified components.
    Kinoshita K; Arnal I; Desai A; Drechsel DN; Hyman AA
    Science; 2001 Nov; 294(5545):1340-3. PubMed ID: 11701928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of dynamic instability of steady-state microtubules in vitro by video-enhanced differential interference contrast microscopy with an appendix by Emin Oroudjev.
    Yenjerla M; Lopus M; Wilson L
    Methods Cell Biol; 2010; 95():189-206. PubMed ID: 20466136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy.
    Gell C; Bormuth V; Brouhard GJ; Cohen DN; Diez S; Friel CT; Helenius J; Nitzsche B; Petzold H; Ribbe J; Schäffer E; Stear JH; Trushko A; Varga V; Widlund PO; Zanic M; Howard J
    Methods Cell Biol; 2010; 95():221-45. PubMed ID: 20466138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial Tubulins A and B Exhibit Polarized Growth, Mixed-Polarity Bundling, and Destabilization by GTP Hydrolysis.
    Díaz-Celis C; Risca VI; Hurtado F; Polka JK; Hansen SD; Maturana D; Lagos R; Mullins RD; Monasterio O
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28716960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the tubulin-colchicine complex on microtubule dynamic instability.
    Vandecandelaere A; Martin SR; Schilstra MJ; Bayley PM
    Biochemistry; 1994 Mar; 33(10):2792-801. PubMed ID: 8130191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Live cell-imaging techniques for analyses of microtubules in Dictyostelium.
    Samereier M; Meyer I; Koonce MP; Gräf R
    Methods Cell Biol; 2010; 97():341-57. PubMed ID: 20719279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent taxoids as probes of the microtubule cytoskeleton.
    Evangelio JA; Abal M; Barasoain I; Souto AA; Lillo MP; Acuña AU; Amat-Guerri F; Andreu JM
    Cell Motil Cytoskeleton; 1998; 39(1):73-90. PubMed ID: 9453715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstituting dynamic microtubule polymerization regulation by TOG domain proteins.
    Al-Bassam J
    Methods Enzymol; 2014; 540():131-48. PubMed ID: 24630105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic analysis of tubulin exchange at microtubule ends at low vinblastine concentrations.
    Jordan MA; Wilson L
    Biochemistry; 1990 Mar; 29(11):2730-9. PubMed ID: 2346745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.