These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31879902)

  • 21. Super-Resolution Microscopy and Single-Molecule Tracking Reveal Distinct Adaptive Dynamics of MreB and of Cell Wall-Synthesis Enzymes.
    Dersch S; Mehl J; Stuckenschneider L; Mayer B; Roth J; Rohrbach A; Graumann PL
    Front Microbiol; 2020; 11():1946. PubMed ID: 32973704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecules of the bacterial cytoskeleton.
    Löwe J; van den Ent F; Amos LA
    Annu Rev Biophys Biomol Struct; 2004; 33():177-98. PubMed ID: 15139810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria.
    Domínguez-Escobar J; Chastanet A; Crevenna AH; Fromion V; Wedlich-Söldner R; Carballido-López R
    Science; 2011 Jul; 333(6039):225-8. PubMed ID: 21636744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescence imaging for bacterial cell biology: from localization to dynamics, from ensembles to single molecules.
    Yao Z; Carballido-López R
    Annu Rev Microbiol; 2014; 68():459-76. PubMed ID: 25002084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-molecule and super-resolution imaging of transcription in living bacteria.
    Stracy M; Kapanidis AN
    Methods; 2017 May; 120():103-114. PubMed ID: 28414097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacillus subtilis actin-like protein MreB influences the positioning of the replication machinery and requires membrane proteins MreC/D and other actin-like proteins for proper localization.
    Defeu Soufo HJ; Graumann PL
    BMC Cell Biol; 2005 Mar; 6(1):10. PubMed ID: 15745453
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prokaryotic origin of the actin cytoskeleton.
    van den Ent F; Amos LA; Löwe J
    Nature; 2001 Sep; 413(6851):39-44. PubMed ID: 11544518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantifying the Assembly of Multicomponent Molecular Machines by Single-Molecule Total Internal Reflection Fluorescence Microscopy.
    Boehm EM; Subramanyam S; Ghoneim M; Washington MT; Spies M
    Methods Enzymol; 2016; 581():105-145. PubMed ID: 27793278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Actin-like proteins MreB and Mbl from Bacillus subtilis are required for bipolar positioning of replication origins.
    Soufo HJ; Graumann PL
    Curr Biol; 2003 Oct; 13(21):1916-20. PubMed ID: 14588250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence microscopy of actin- and microtubule-associated septins in mammalian cells.
    Spiliotis ET; Karasmanis EP; Dolat L
    Methods Cell Biol; 2016; 136():243-68. PubMed ID: 27473913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles.
    Ruthardt N; Lamb DC; Bräuchle C
    Mol Ther; 2011 Jul; 19(7):1199-211. PubMed ID: 21654634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatio-temporal image correlation spectroscopy and super-resolution microscopy to quantify molecular dynamics in T cells.
    Ashdown GW; Owen DM
    Methods; 2018 May; 140-141():112-118. PubMed ID: 29410223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions of tropomyosin Tpm1.1 on a single actin filament: A method for extraction and processing of high resolution TIRF microscopy data.
    Janco M; Böcking T; He S; Coster ACF
    PLoS One; 2018; 13(12):e0208586. PubMed ID: 30532204
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacillus subtilis MreB paralogues have different filament architectures and lead to shape remodelling of a heterologous cell system.
    Soufo HJ; Graumann PL
    Mol Microbiol; 2010 Dec; 78(5):1145-58. PubMed ID: 21091501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large-scale purification and in vitro characterization of the assembly of MreB from Leptospira interrogans.
    Barkó S; Szatmári D; Bódis E; Türmer K; Ujfalusi Z; Popp D; Robinson RC; Nyitrai M
    Biochim Biophys Acta; 2016 Sep; 1860(9):1942-52. PubMed ID: 27297907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic movement of actin-like proteins within bacterial cells.
    Defeu Soufo HJ; Graumann PL
    EMBO Rep; 2004 Aug; 5(8):789-94. PubMed ID: 15272301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studying Tau-Microtubule Interaction Using Single-Molecule TIRF Microscopy.
    Stoppin-Mellet V; Bagdadi N; Saoudi Y; Arnal I
    Methods Mol Biol; 2020; 2101():77-91. PubMed ID: 31879899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From single bacterial cell imaging towards
    Endesfelder U
    Essays Biochem; 2019 Jul; 63(2):187-196. PubMed ID: 31197072
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coverslip Cleaning and Functionalization for Total Internal Reflection Fluorescence Microscopy.
    Kudalkar EM; Deng Y; Davis TN; Asbury CL
    Cold Spring Harb Protoc; 2016 May; 2016(5):pdb.prot085548. PubMed ID: 27140911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy.
    Rowland DJ; Tuson HH; Biteen JS
    Biophys J; 2016 May; 110(10):2241-51. PubMed ID: 27224489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.