BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31880265)

  • 1. Prediction of Oral Acute Toxicity of Organophosphates Using QSAR Methods.
    Kianpour M; Mohammadinasab E; Isfahani TM
    Curr Comput Aided Drug Des; 2021; 17(1):38-56. PubMed ID: 31880265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Quantitative Structure Activity Relationship for acute oral toxicity of pesticides on rats: Validation, domain of application and prediction.
    Hamadache M; Benkortbi O; Hanini S; Amrane A; Khaouane L; Si Moussa C
    J Hazard Mater; 2016 Feb; 303():28-40. PubMed ID: 26513561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSAR and Classification Study on Prediction of Acute Oral Toxicity of
    Fan T; Sun G; Zhao L; Cui X; Zhong R
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30282923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative structure-toxicity relationship (QSTR) studies on the organophosphate insecticides.
    Can A
    Toxicol Lett; 2014 Nov; 230(3):434-43. PubMed ID: 25149906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Design of a Low-Data Regime of Pyrrole Antioxidants for Radical Scavenging Activities Using Quantum Chemical Descriptors and QSAR with the GA-MLR and ANN Concepts.
    Xie W; Wiriyarattanakul S; Rungrotmongkol T; Shi L; Wiriyarattanakul A; Maitarad P
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of GA-MLR for QSAR Modeling of the Arylthioindole Class of Tubulin Polymerization Inhibitors as Anticancer Agents.
    Ahmadi S; Habibpour E
    Anticancer Agents Med Chem; 2017; 17(4):552-565. PubMed ID: 27528182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemometric QSAR modeling of acute oral toxicity of Polycyclic Aromatic Hydrocarbons (PAHs) to rat using simple 2D descriptors and interspecies toxicity modeling with mouse.
    Sun G; Zhang Y; Pei L; Lou Y; Mu Y; Yun J; Li F; Wang Y; Hao Z; Xi S; Li C; Chen C; Zhao L; Zhang N; Zhong R; Peng Y
    Ecotoxicol Environ Saf; 2021 Oct; 222():112525. PubMed ID: 34274838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative structure-activity relationships for organophosphates binding to acetylcholinesterase.
    Ruark CD; Hack CE; Robinson PJ; Anderson PE; Gearhart JM
    Arch Toxicol; 2013 Feb; 87(2):281-9. PubMed ID: 22990135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genetic algorithm- back propagation artificial neural network model to quantify the affinity of flavonoids toward P-glycoprotein.
    Shen J; Cui Y; Gu J; Li Y; Li L
    Comb Chem High Throughput Screen; 2014 Feb; 17(2):162-72. PubMed ID: 24206113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSAR Models for Predicting Aquatic Toxicity of Esters Using Genetic Algorithm-Multiple Linear Regression Methods.
    Rajabi M; Shafiei F
    Comb Chem High Throughput Screen; 2019 Aug; 22(5):317-325. PubMed ID: 31215375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico modelling of pesticide aquatic toxicity.
    Agatonovic-Kustrin S; Morton DW; Razic S
    Comb Chem High Throughput Screen; 2014; 17(9):808-18. PubMed ID: 25335880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute toxicity of some nerve agents and pesticides in rats.
    Misik J; Pavlikova R; Cabal J; Kuca K
    Drug Chem Toxicol; 2015 Jan; 38(1):32-6. PubMed ID: 24641243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QSAR modeling of acute toxicity on mammals caused by aromatic compounds: the case study using oral LD50 for rats.
    Rasulev B; Kusić H; Leszczynska D; Leszczynski J; Koprivanac N
    J Environ Monit; 2010 May; 12(5):1037-44. PubMed ID: 21491673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple approach for assessment of toxicity of nitroaromatic compounds without using complex descriptors and computer codes.
    Keshavarz MH; Akbarzadeh AR
    SAR QSAR Environ Res; 2019 May; 30(5):347-361. PubMed ID: 31020866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensemble machine learning to evaluate the in vivo acute oral toxicity and in vitro human acetylcholinesterase inhibitory activity of organophosphates.
    Wang L; Ding J; Shi P; Fu L; Pan L; Tian J; Cao D; Jiang H; Ding X
    Arch Toxicol; 2021 Jul; 95(7):2443-2457. PubMed ID: 33934188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Structure-Activity Relationship Study of Camptothecin Derivatives as Anticancer Drugs Using Molecular Descriptors.
    Ahmadinejad N; Shafiei F
    Comb Chem High Throughput Screen; 2019; 22(6):387-399. PubMed ID: 31284856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Norm Index-Based QSAR Model for Acute Toxicity of Pesticides Toward Rainbow Trout.
    Jia Q; Liu T; Yan F; Wang Q
    Environ Toxicol Chem; 2020 Feb; 39(2):352-358. PubMed ID: 31634980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards global QSAR model building for acute toxicity: Munro database case study.
    Chavan S; Nicholls IA; Karlsson BC; Rosengren AM; Ballabio D; Consonni V; Todeschini R
    Int J Mol Sci; 2014 Oct; 15(10):18162-74. PubMed ID: 25302621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oral LD50 toxicity modeling and prediction of per- and polyfluorinated chemicals on rat and mouse.
    Bhhatarai B; Gramatica P
    Mol Divers; 2011 May; 15(2):467-76. PubMed ID: 20803170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.