These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3188031)

  • 1. Influence of glutathione on the formation of cysteine alkylation products in human hemoglobin.
    Evelo CT; Henderson PT
    Toxicology; 1988 Nov; 52(1-2):177-86. PubMed ID: 3188031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction of human hemoglobin toward the alkylating agent S-(2-chloroethyl)glutathione.
    Erve JC; Deinzer ML; Reed DJ
    J Toxicol Environ Health; 1996 Oct; 49(2):127-43. PubMed ID: 8874532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disappearance of free SH-groups in hemoglobin of man, rat and rabbit after exposure to alkylating agents in vitro.
    Neis JM; Van Gemert PJ; Roelofs HM; Henderson PT
    Toxicology; 1984 Jun; 31(3-4):319-27. PubMed ID: 6740705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial glutathione transferases. The alkylation of mitochondrial membrane yields a catalyst with glutathione-transferase-like properties.
    Kraus P; Wigand J; Ostermaier R
    Biol Chem Hoppe Seyler; 1986 Sep; 367(9):937-41. PubMed ID: 3790261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of membrane protein sulfhydryl groups in hydrogen peroxide-mediated membrane damage in human erythrocytes.
    Snyder LM; Fortier NL; Leb L; McKenney J; Trainor J; Sheerin H; Mohandas N
    Biochim Biophys Acta; 1988 Jan; 937(2):229-40. PubMed ID: 3337802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkylation of cytochrome c by (glutathion-S-yl)-1,4-benzoquinone and iodoacetamide demonstrates compound-dependent site specificity.
    Person MD; Mason DE; Liebler DC; Monks TJ; Lau SS
    Chem Res Toxicol; 2005 Jan; 18(1):41-50. PubMed ID: 15651848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Redox Potential of the β-
    Rubino FM
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33926119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytotoxicity of alkylating agents towards sensitive and resistant strains of Escherichia coli in relation to extent and mode of alkylation of cellular macromolecules and repair of alkylation lesions in deoxyribonucleic acids.
    Lawley PD; Brookes P
    Biochem J; 1968 Sep; 109(3):433-47. PubMed ID: 4879534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge-shift strategy for isolation of hemoglobin-carcinogen adducts formed at the beta 93 cysteine sulfhydryl groups.
    Haugen DA
    Chem Res Toxicol; 1989; 2(6):379-85. PubMed ID: 2519727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction products in hemoglobin and DNA after in vitro treatment with ethylene oxide and N-(2-hydroxyethyl)-N-nitrosourea.
    Segerbäck D
    Carcinogenesis; 1990 Feb; 11(2):307-12. PubMed ID: 2302758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of methyl iodide for probing the polarity of the immediate environment of --SH groups in thiolenzymes. Reaction of methyl iodide with thiosubtilisin.
    Halász P; Polgár L
    Eur J Biochem; 1976 Dec; 71(2):563-9. PubMed ID: 1009966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of consistent alkylation of cysteine-less peptides in a proteomics experiment.
    Woods AG; Sokolowska I; Darie CC
    Biochem Biophys Res Commun; 2012 Mar; 419(2):305-8. PubMed ID: 22342715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent inactivation of P450 3A4 by raloxifene: identification of Cys239 as the site of apoprotein alkylation.
    Baer BR; Wienkers LC; Rock DA
    Chem Res Toxicol; 2007 Jun; 20(6):954-64. PubMed ID: 17497897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of hemoglobin thiol groups within red blood cells of rat during oxidation of glutathione.
    Kosower NS; Kosower EM; Koppel RL
    Eur J Biochem; 1977 Aug; 77(3):529-34. PubMed ID: 891549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural characterization by mass spectrometry of hemoglobin adducts formed after in vivo exposure to methyl bromide.
    Ferranti P; Sannolo N; Mamone G; Fiume I; Carbone V; Tornqvist M; Bergman A; Malorni A
    Carcinogenesis; 1996 Dec; 17(12):2661-71. PubMed ID: 9006104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide produced in the heme pocket of the beta-chain of hemoglobin reacts with the beta-93 cysteine to produce a thiyl radical.
    Balagopalakrishna C; Abugo OO; Horsky J; Manoharan PT; Nagababu E; Rifkind JM
    Biochemistry; 1998 Sep; 37(38):13194-202. PubMed ID: 9748326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EPR detection of glutathiyl and hemoglobin-cysteinyl radicals during the interaction of peroxynitrite with human erythrocytes.
    Augusto O; Lopes de Menezes S; Linares E; Romero N; Radi R; Denicola A
    Biochemistry; 2002 Dec; 41(48):14323-8. PubMed ID: 12450398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine adducts of human haemoglobin measured by isoelectric focusing in polyacrylamide gels with a non-linear pH gradient.
    Evelo CT; Niessen HJ; Roelofs HM; Henderson PT
    J Chromatogr; 1987 Sep; 420(1):35-42. PubMed ID: 3667828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Impact of Commonly Used Alkylating Agents on Artifactual Peptide Modification.
    Hains PG; Robinson PJ
    J Proteome Res; 2017 Sep; 16(9):3443-3447. PubMed ID: 28799334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered sulfhydryl reactivity of hemoglobins and red blood cell membranes in congenital Heinz body hemolytic anemia.
    Jacob HS; Brain MC; Dacie JV
    J Clin Invest; 1968 Dec; 47(12):2664-77. PubMed ID: 5725279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.