These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3188044)

  • 1. Using the nematode Caenorhabditis elegans to predict mammalian acute lethality to metallic salts.
    Williams PL; Dusenbery DB
    Toxicol Ind Health; 1988 Dec; 4(4):469-78. PubMed ID: 3188044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells.
    Yamamoto A; Honma R; Sumita M
    J Biomed Mater Res; 1998 Feb; 39(2):331-40. PubMed ID: 9457565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity.
    Cole RD; Anderson GL; Williams PL
    Toxicol Appl Pharmacol; 2004 Feb; 194(3):248-56. PubMed ID: 14761681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lethality toxicities induced by metal exposure during development in nematode Caenorhabditis elegans.
    Xing X; Rui Q; Wang D
    Bull Environ Contam Toxicol; 2009 Oct; 83(4):530-6. PubMed ID: 19588066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Toxicities of Nickel Salts to the Nematode Caenorhabditis elegans.
    Meyer D; Birdsey JM; Wendolowski MA; Dobbin KK; Williams PL
    Bull Environ Contam Toxicol; 2016 Aug; 97(2):166-70. PubMed ID: 27278637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study on the relationship between various toxicological endpoints in Caenorhabditis elegans exposed to organophosphorus insecticides.
    Rajini PS; Melstrom P; Williams PL
    J Toxicol Environ Health A; 2008; 71(15):1043-50. PubMed ID: 18569613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A promising indicator of neurobehavioral toxicity using the nematode Caenorhabditis elegans and computer tracking.
    Williams PL; Dusenbery DB
    Toxicol Ind Health; 1990; 6(3-4):425-40. PubMed ID: 2237928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytotoxicity of heavy metals in the human small intestinal epithelial cell line I-407: the role of glutathione.
    Keogh JP; Steffen B; Siegers CP
    J Toxicol Environ Health; 1994 Nov; 43(3):351-9. PubMed ID: 7966443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interspecific Variation in Nematode Responses to Metals.
    Heaton A; Faulconer E; Milligan E; Kroetz MB; Weir SM; Glaberman S
    Environ Toxicol Chem; 2020 May; 39(5):1006-1016. PubMed ID: 32072668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans.
    Anderson GL; Boyd WA; Williams PL
    Environ Toxicol Chem; 2001 Apr; 20(4):833-8. PubMed ID: 11345460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity ranking of heavy metals with screening method using adult Caenorhabditis elegans and propidium iodide replicates toxicity ranking in rat.
    Hunt PR; Olejnik N; Sprando RL
    Food Chem Toxicol; 2012 Sep; 50(9):3280-90. PubMed ID: 22771366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity of metals on Daphnia magna and Tubifex tubifex.
    Fargasová A
    Ecotoxicol Environ Saf; 1994 Mar; 27(2):210-3. PubMed ID: 7516286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biological toxicity of heavy metals to Caenorhabditis elegans].
    Huang YE; Zhang N; Jiang YX; Guo W; Li CP
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2015 Jun; 27(3):290-4. PubMed ID: 26510363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of polycyclic aromatic hydrocarbons to the nematode Caenorhabditis elegans.
    Sese BT; Grant A; Reid BJ
    J Toxicol Environ Health A; 2009; 72(19):1168-80. PubMed ID: 20077185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Availability of metals to the nematode Caenorhabditis elegans: toxicity based on total concentrations in soil and extracted fractions.
    Boyd WA; Williams PL
    Environ Toxicol Chem; 2003 May; 22(5):1100-6. PubMed ID: 12729220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of two alternative methods for predicting the in vivo toxicities of metallic compounds.
    Hulme LM; Reeves HL; Clothier RH; Smith M; Balls M
    Mol Toxicol; 1987-1988 Fall; 1(4):589-96. PubMed ID: 3509705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans.
    Ma H; Bertsch PM; Glenn TC; Kabengi NJ; Williams PL
    Environ Toxicol Chem; 2009 Jun; 28(6):1324-30. PubMed ID: 19192952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparisons of acute toxicity of selected chemicals to rainbow trout and rats.
    Delistraty D; Taylor B; Anderson R
    Ecotoxicol Environ Saf; 1998 Mar; 39(3):195-200. PubMed ID: 9570910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using the larvae nematode Caenorhabditis elegans to evaluate neurobehavioral toxicity to metallic salts.
    Xing X; Guo Y; Wang D
    Ecotoxicol Environ Saf; 2009 Oct; 72(7):1819-23. PubMed ID: 19573919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anthelmintic activity of phenolic acids from the axlewood tree Anogeissus leiocarpus on the filarial nematode Onchocerca ochengi and drug-resistant strains of the free-living nematode Caenorhabditis elegans.
    Ndjonka D; Abladam ED; Djafsia B; Ajonina-Ekoti I; Achukwi MD; Liebau E
    J Helminthol; 2014 Dec; 88(4):481-8. PubMed ID: 23768773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.