These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 31881261)
1. Melt electrohydrodynamic 3D printed poly (ε-caprolactone)/polyethylene glycol/roxithromycin scaffold as a potential anti-infective implant in bone repair. Bai J; Wang H; Gao W; Liang F; Wang Z; Zhou Y; Lan X; Chen X; Cai N; Huang W; Tang Y Int J Pharm; 2020 Feb; 576():118941. PubMed ID: 31881261 [TBL] [Abstract][Full Text] [Related]
2. Antimicrobial Activity of 3D-Printed Poly(ε-Caprolactone) (PCL) Composite Scaffolds Presenting Vancomycin-Loaded Polylactic Acid-Glycolic Acid (PLGA) Microspheres. Zhou Z; Yao Q; Li L; Zhang X; Wei B; Yuan L; Wang L Med Sci Monit; 2018 Sep; 24():6934-6945. PubMed ID: 30269152 [TBL] [Abstract][Full Text] [Related]
3. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications. Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642 [TBL] [Abstract][Full Text] [Related]
4. The effect of polyethylene glycol on printability, physical and mechanical properties and osteogenic potential of 3D-printed poly (l-lactic acid)/polyethylene glycol scaffold for bone tissue engineering. Salehi S; Ghomi H; Hassanzadeh-Tabrizi SA; Koupaei N; Khodaei M Int J Biol Macromol; 2022 Nov; 221():1325-1334. PubMed ID: 36087749 [TBL] [Abstract][Full Text] [Related]
5. Antibacterial and Osteogenic Dual-Functional Micronano Composite Scaffold Fabricated via Melt Electrowriting and Solution Electrospinning for Bone Tissue Engineering. Lai X; Huang J; Huang S; Wang J; Zheng Y; Luo Y; Tang L; Gao B; Tang Y ACS Appl Mater Interfaces; 2024 Jul; 16(29):37707-37721. PubMed ID: 39001812 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering. Arbade GK; Srivastava J; Tripathi V; Lenka N; Patro TU J Biomater Sci Polym Ed; 2020 Sep; 31(13):1648-1670. PubMed ID: 32402230 [TBL] [Abstract][Full Text] [Related]
8. Tissue engineering scaffolds of mesoporous magnesium silicate and poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) composite. He D; Dong W; Tang S; Wei J; Liu Z; Gu X; Li M; Guo H; Niu Y J Mater Sci Mater Med; 2014 Jun; 25(6):1415-24. PubMed ID: 24595904 [TBL] [Abstract][Full Text] [Related]
9. In vivo biocompatibility and osteogenesis of electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone)/nano-hydroxyapatite composite scaffold. Fu S; Ni P; Wang B; Chu B; Peng J; Zheng L; Zhao X; Luo F; Wei Y; Qian Z Biomaterials; 2012 Nov; 33(33):8363-71. PubMed ID: 22921926 [TBL] [Abstract][Full Text] [Related]
10. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds. Jiang CP; Chen YY; Hsieh MF; Lee HM Biomed Microdevices; 2013 Apr; 15(2):369-79. PubMed ID: 23324877 [TBL] [Abstract][Full Text] [Related]
11. Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds. He J; Xia P; Li D Biofabrication; 2016 Aug; 8(3):035008. PubMed ID: 27490377 [TBL] [Abstract][Full Text] [Related]
12. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
13. Degradability, cytocompatibility, and osteogenesis of porous scaffolds of nanobredigite and PCL-PEG-PCL composite. Hou J; Fan D; Zhao L; Yu B; Su J; Wei J; Shin JW Int J Nanomedicine; 2016; 11():3545-55. PubMed ID: 27555774 [TBL] [Abstract][Full Text] [Related]
14. Osteoregenerative Potential of 3D-Printed Poly Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373 [TBL] [Abstract][Full Text] [Related]
15. Nanocalcium-deficient hydroxyapatite-poly (e-caprolactone)-polyethylene glycol-poly (e-caprolactone) composite scaffolds. Wang Z; Li M; Yu B; Cao L; Yang Q; Su J Int J Nanomedicine; 2012; 7():3123-31. PubMed ID: 22848159 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering. Cui Z; Lin L; Si J; Luo Y; Wang Q; Lin Y; Wang X; Chen W J Biomater Sci Polym Ed; 2017 Jun; 28(9):826-845. PubMed ID: 28278041 [TBL] [Abstract][Full Text] [Related]
18. Polycaprolactone scaffolds fabricated with an advanced electrohydrodynamic direct-printing method for bone tissue regeneration. Ahn SH; Lee HJ; Kim GH Biomacromolecules; 2011 Dec; 12(12):4256-63. PubMed ID: 22070169 [TBL] [Abstract][Full Text] [Related]
19. 3D Printed Poly(𝜀-caprolactone)/Hydroxyapatite Scaffolds for Bone Tissue Engineering: A Comparative Study on a Composite Preparation by Melt Blending or Solvent Casting Techniques and the Influence of Bioceramic Content on Scaffold Properties. Biscaia S; Branquinho MV; Alvites RD; Fonseca R; Sousa AC; Pedrosa SS; Caseiro AR; Guedes F; Patrício T; Viana T; Mateus A; Maurício AC; Alves N Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216432 [TBL] [Abstract][Full Text] [Related]
20. Towards osteogenic differentiation of human dental pulp stem cells on PCL-PEG-PCL/zeolite nanofibrous scaffolds. Alipour M; Aghazadeh M; Akbarzadeh A; Vafajoo Z; Aghazadeh Z; Raeisdasteh Hokmabad V Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):3431-3437. PubMed ID: 31411067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]