BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 31881433)

  • 41. CRISPR/Cas9: An RNA-guided highly precise synthetic tool for plant genome editing.
    Demirci Y; Zhang B; Unver T
    J Cell Physiol; 2018 Mar; 233(3):1844-1859. PubMed ID: 28430356
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recent progress in CRISPR/Cas9-based genome editing for enhancing plant disease resistance.
    Boubakri H
    Gene; 2023 May; 866():147334. PubMed ID: 36871676
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Editing plants for virus resistance using CRISPR-Cas.
    Green JC; Hu JS
    Acta Virol; 2017; 61(2):138-142. PubMed ID: 28523919
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Development of Herbicide Resistance Crop Plants Using CRISPR/Cas9-Mediated Gene Editing.
    Dong H; Huang Y; Wang K
    Genes (Basel); 2021 Jun; 12(6):. PubMed ID: 34204760
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.
    Ma X; Zhu Q; Chen Y; Liu YG
    Mol Plant; 2016 Jul; 9(7):961-74. PubMed ID: 27108381
    [TBL] [Abstract][Full Text] [Related]  

  • 46. From plant immunity to crop disease resistance.
    Zhao Y; Zhu X; Chen X; Zhou JM
    J Genet Genomics; 2022 Aug; 49(8):693-703. PubMed ID: 35728759
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Recent progresses in CRISPR genome editing in plants].
    Li H; Xie K
    Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1700-1711. PubMed ID: 29082718
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanotechnology and CRISPR/Cas9 system for sustainable agriculture.
    Khanna K; Ohri P; Bhardwaj R
    Environ Sci Pollut Res Int; 2023 Dec; 30(56):118049-118064. PubMed ID: 36973619
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The CRISPR-Cas system for plant genome editing: advances and opportunities.
    Kumar V; Jain M
    J Exp Bot; 2015 Jan; 66(1):47-57. PubMed ID: 25371501
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Clustered Regularly Interspaced Short Palindromic Repeats-Associated Protein System for Resistance Against Plant Viruses: Applications and Perspectives.
    Silva FDA; Fontes EPB
    Front Plant Sci; 2022; 13():904829. PubMed ID: 35693174
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice.
    Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T
    Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CRISPR-Cas13a: Prospects for Plant Virus Resistance.
    Khan MZ; Amin I; Hameed A; Mansoor S
    Trends Biotechnol; 2018 Dec; 36(12):1207-1210. PubMed ID: 29903474
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome editing (CRISPR-Cas)-mediated virus resistance in potato (Solanum tuberosum L.).
    Tiwari JK; A J; Tuteja N; Khurana SMP
    Mol Biol Rep; 2022 Dec; 49(12):12109-12119. PubMed ID: 35764748
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing.
    Manghwar H; Lindsey K; Zhang X; Jin S
    Trends Plant Sci; 2019 Dec; 24(12):1102-1125. PubMed ID: 31727474
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Application of CRISPR/Cas9 system in breeding of new antiviral plant germplasm.
    Zhang DW; Zhang CF; Dong F; Huang YL; Zhang Y; Zhou H
    Yi Chuan; 2016 Sep; 38(9):811-20. PubMed ID: 27644742
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A CRISPR Way for Fast-Forward Crop Domestication.
    Khan MZ; Zaidi SS; Amin I; Mansoor S
    Trends Plant Sci; 2019 Apr; 24(4):293-296. PubMed ID: 30738789
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Towards CRISPR/Cas crops - bringing together genomics and genome editing.
    Scheben A; Wolter F; Batley J; Puchta H; Edwards D
    New Phytol; 2017 Nov; 216(3):682-698. PubMed ID: 28762506
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CRISPR-Cas9-mediated genome editing in apple and grapevine.
    Osakabe Y; Liang Z; Ren C; Nishitani C; Osakabe K; Wada M; Komori S; Malnoy M; Velasco R; Poli M; Jung MH; Koo OJ; Viola R; Nagamangala Kanchiswamy C
    Nat Protoc; 2018 Dec; 13(12):2844-2863. PubMed ID: 30390050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.