These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 31881735)

  • 1. RNA-seq and ChIP-seq as Complementary Approaches for Comprehension of Plant Transcriptional Regulatory Mechanism.
    Muhammad II; Kong SL; Akmar Abdullah SN; Munusamy U
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31881735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of high-throughput sequencing methods for plant microRNA research.
    Ma X; Tang Z; Qin J; Meng Y
    RNA Biol; 2015; 12(7):709-19. PubMed ID: 26016494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping Transcription Regulatory Networks with ChIP-seq and RNA-seq.
    Wade JT
    Adv Exp Med Biol; 2015; 883():119-34. PubMed ID: 26621465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TELP, a sensitive and versatile library construction method for next-generation sequencing.
    Peng X; Wu J; Brunmeir R; Kim SY; Zhang Q; Ding C; Han W; Xie W; Xu F
    Nucleic Acids Res; 2015 Mar; 43(6):e35. PubMed ID: 25223787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting gene regulatory networks of soybean nodulation from RNA-Seq transcriptome data.
    Zhu M; Dahmen JL; Stacey G; Cheng J
    BMC Bioinformatics; 2013 Sep; 14():278. PubMed ID: 24053776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ChIP-Seq Data Analysis to Define Transcriptional Regulatory Networks.
    Pavesi G
    Adv Biochem Eng Biotechnol; 2017; 160():1-14. PubMed ID: 28070596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunoprecipitation and High-Throughput Sequencing of ARGONAUTE-Bound Target RNAs from Plants.
    Carbonell A
    Methods Mol Biol; 2017; 1640():93-112. PubMed ID: 28608336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of experimental design and computational parameter choices affecting analyses of ChIP-seq and RNA-seq data in undomesticated poplar trees.
    Liu L; Missirian V; Zinkgraf M; Groover A; Filkov V
    BMC Genomics; 2014; 15 Suppl 5(Suppl 5):S3. PubMed ID: 25081589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel transcriptional network for the androgen receptor in human epididymis epithelial cells.
    Yang R; Browne JA; Eggener SE; Leir SH; Harris A
    Mol Hum Reprod; 2018 Sep; 24(9):433-443. PubMed ID: 30016502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA Sequencing Analyses of Gene Expression during Epstein-Barr Virus Infection of Primary B Lymphocytes.
    Wang C; Li D; Zhang L; Jiang S; Liang J; Narita Y; Hou I; Zhong Q; Zheng Z; Xiao H; Gewurz BE; Teng M; Zhao B
    J Virol; 2019 Jul; 93(13):. PubMed ID: 31019051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive evaluation of RNA-seq analysis pipelines in diploid and polyploid species.
    Payá-Milans M; Olmstead JW; Nunez G; Rinehart TA; Staton M
    Gigascience; 2018 Dec; 7(12):. PubMed ID: 30418578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of Genome-Wide TF Binding and Gene Expression Data to Characterize Gene Regulatory Networks in Plant Development.
    Chen D; Kaufmann K
    Methods Mol Biol; 2017; 1629():239-269. PubMed ID: 28623590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systems Biology Analyses in Chicken: Workflow for Transcriptome and ChIP-Seq Analyses Using the Chicken Skin Paradigm.
    Lai YC; Widelitz RB; Chuong CM
    Methods Mol Biol; 2017; 1650():87-100. PubMed ID: 28809015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of opaque2 in maize.
    Li C; Qiao Z; Qi W; Wang Q; Yuan Y; Yang X; Tang Y; Mei B; Lv Y; Zhao H; Xiao H; Song R
    Plant Cell; 2015 Mar; 27(3):532-45. PubMed ID: 25691733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CIPHER: a flexible and extensive workflow platform for integrative next-generation sequencing data analysis and genomic regulatory element prediction.
    Guzman C; D'Orso I
    BMC Bioinformatics; 2017 Aug; 18(1):363. PubMed ID: 28789639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants.
    Chow CN; Lee TY; Hung YC; Li GZ; Tseng KC; Liu YH; Kuo PL; Zheng HQ; Chang WC
    Nucleic Acids Res; 2019 Jan; 47(D1):D1155-D1163. PubMed ID: 30395277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ALGAEFUN with MARACAS, microALGAE FUNctional enrichment tool for MicroAlgae RnA-seq and Chip-seq AnalysiS.
    Romero-Losada AB; Arvanitidou C; de Los Reyes P; García-González M; Romero-Campero FJ
    BMC Bioinformatics; 2022 Mar; 23(1):113. PubMed ID: 35361110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide identification of binding sites for NAC and YABBY transcription factors and co-regulated genes during soybean seedling development by ChIP-Seq and RNA-Seq.
    Shamimuzzaman M; Vodkin L
    BMC Genomics; 2013 Jul; 14():477. PubMed ID: 23865409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear RNA sequencing of the mouse erythroid cell transcriptome.
    Mitchell JA; Clay I; Umlauf D; Chen CY; Moir CA; Eskiw CH; Schoenfelder S; Chakalova L; Nagano T; Fraser P
    PLoS One; 2012; 7(11):e49274. PubMed ID: 23209567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ChIP-Seq: A Powerful Tool for Studying Protein-DNA Interactions in Plants.
    Chen X; Bhadauria V; Ma B
    Curr Issues Mol Biol; 2018; 27():171-180. PubMed ID: 28885181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.