These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31881768)

  • 1. The Role of Humic Acid, PP Beads, and pH with Water Backwashing in a Hybrid Water Treatment of Multichannel Alumina Microfiltration and PP Beads.
    Hwang S; Lee Y; Park JY
    Membranes (Basel); 2019 Dec; 10(1):. PubMed ID: 31881768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pH and polypropylene beads in hybrid water treatment process of alumina ceramic microfiltration and PP beads with air back-flushing and UV irradiation.
    Park JY; Song S
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1142-1151. PubMed ID: 28685338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Function of Adsorption, Photo-Oxidation, and Humic Acid Using Air Backwashing in Integrated Water Treatment of Multichannel Ceramic MF and PP Particles.
    Park S; Kim D; Park JY
    Membranes (Basel); 2020 Feb; 10(2):. PubMed ID: 32054001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal Water Backwashing Condition in Combined Water Treatment of Alumina Microfiltration and PP Beads.
    Cho H; Yoon G; Kim M; Park JY
    Membranes (Basel); 2022 Jan; 12(1):. PubMed ID: 35054618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of dissolved organic matter and control of membrane fouling by a hybrid ferrihydrite-ultrafiltration membrane system.
    Zhang S; Yang Y; Takizawa S; Hou LA
    Sci Total Environ; 2018 Aug; 631-632():560-569. PubMed ID: 29533792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the effect of humic acids and phenol on adsorption-ultrafiltration process performance.
    Mozia S; Tomaszewska M; Morawski AW
    Water Res; 2005; 39(2-3):501-9. PubMed ID: 15644259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of the Interaction between Aquatic Humic Substances and Algal Organic Matter on the Fouling of a Ceramic Microfiltration Membrane.
    Zhang X; Fan L; Roddick FA
    Membranes (Basel); 2018 Feb; 8(1):. PubMed ID: 29389873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performing a microfiltration integrated with photocatalysis using an Ag-TiO(2)/HAP/Al(2)O(3) composite membrane for water treatment: Evaluating effectiveness for humic acid removal and anti-fouling properties.
    Ma N; Zhang Y; Quan X; Fan X; Zhao H
    Water Res; 2010 Dec; 44(20):6104-14. PubMed ID: 20650505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of polymer flocculants on coagulation-microfiltration of surface water.
    Wang S; Liu C; Li Q
    Water Res; 2013 Sep; 47(13):4538-46. PubMed ID: 23764603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid ferrihydrite-MF/UF membrane filtration for the simultaneous removal of dissolved organic matter and phosphate.
    Yang Y; Lohwacharin J; Takizawa S
    Water Res; 2014 Nov; 65():177-85. PubMed ID: 25113947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Polypropylene and Ceramic Microfiltration Membranes Applied for Separation of 1,3-PD Fermentation Broths and
    Tomczak W; Gryta M
    Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33435635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fouling of microfiltration and ultrafiltration membranes by natural waters.
    Howe KJ; Clark MM
    Environ Sci Technol; 2002 Aug; 36(16):3571-6. PubMed ID: 12214651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminum-induced changes in properties and fouling propensity of DOM solutions revealed by UV-vis absorbance spectral parameters.
    Zhou M; Meng F
    Water Res; 2016 Apr; 93():153-162. PubMed ID: 26900968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term operation of biological activated carbon pre-treatment for microfiltration of secondary effluent: Correlation between the organic foulants and fouling potential.
    Pramanik BK; Roddick FA; Fan L
    Water Res; 2016 Mar; 90():405-414. PubMed ID: 26773606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybridized photocatalysis-microfiltration system with iron oxide-coated membranes for the removal of natural organic matter in water treatment: effects of iron oxide layers and colloids.
    Yao P; Choo KH; Kim MH
    Water Res; 2009 Sep; 43(17):4238-48. PubMed ID: 19576613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sunlight irradiation triggers changes in the fouling potentials of natural dissolved organic matter.
    Zhou Z; Zhou M; Yang X; Niu J; Meng F
    Sci Total Environ; 2018 Jun; 627():227-234. PubMed ID: 29426145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using UV-vis absorbance spectral parameters to characterize the fouling propensity of humic substances during ultrafiltration.
    Zhou M; Meng F
    Water Res; 2015 Dec; 87():311-9. PubMed ID: 26433779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated pyrolucite fluidized bed-membrane hybrid process for improved iron and manganese control in drinking water.
    Dashtban Kenari SL; Barbeau B
    Water Res; 2017 Apr; 113():50-61. PubMed ID: 28189996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of landfill leachate by hybrid precipitation/microfiltration/nanofiltration process.
    Amaral MC; Pereira HV; Nani E; Lange LC
    Water Sci Technol; 2015; 72(2):269-76. PubMed ID: 26177410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of algal organic matter released from Microcystis aeruginosa and Chlorella sp. on the fouling of a ceramic microfiltration membrane.
    Zhang X; Devanadera MCE; Roddick FA; Fan L; Dalida MLP
    Water Res; 2016 Oct; 103():391-400. PubMed ID: 27486951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.