These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 31881845)

  • 1. Investigating host-bacterial interactions among enteric pathogens.
    Bose T; Venkatesh KV; Mande SS
    BMC Genomics; 2019 Dec; 20(1):1022. PubMed ID: 31881845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Analysis of Host-Pathogen Protein Interactions between Humans and Different Strains of Enterohemorrhagic
    Bose T; Venkatesh KV; Mande SS
    Front Cell Infect Microbiol; 2017; 7():128. PubMed ID: 28469995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection.
    Stecher B
    Microbiol Spectr; 2015 Jun; 3(3):. PubMed ID: 26185088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico prediction of host-pathogen protein interactions in melioidosis pathogen Burkholderia pseudomallei and human reveals novel virulence factors and their targets.
    Loaiza CD; Duhan N; Lister M; Kaundal R
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32444871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of the Gut Microbiota Colonization Resistance and Enteric Pathogen Infection.
    Khan I; Bai Y; Zha L; Ullah N; Ullah H; Shah SRH; Sun H; Zhang C
    Front Cell Infect Microbiol; 2021; 11():716299. PubMed ID: 35004340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gastrointestinal host-pathogen interaction in the age of microbiome research.
    Tsolis RM; Bäumler AJ
    Curr Opin Microbiol; 2020 Feb; 53():78-89. PubMed ID: 32344325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens.
    Awad WA; Hess C; Hess M
    Toxins (Basel); 2017 Feb; 9(2):. PubMed ID: 28208612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive nitrogen species in host-bacterial interactions.
    Fang FC; Vázquez-Torres A
    Curr Opin Immunol; 2019 Oct; 60():96-102. PubMed ID: 31200187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of host - pathogen protein interactions between Mycobacterium tuberculosis and Homo sapiens using sequence motifs.
    Huo T; Liu W; Guo Y; Yang C; Lin J; Rao Z
    BMC Bioinformatics; 2015 Mar; 16(1):100. PubMed ID: 25887594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanisms employed by enteric bacterial pathogens to antagonise host innate immunity.
    Gan J; Giogha C; Hartland EL
    Curr Opin Microbiol; 2021 Feb; 59():58-64. PubMed ID: 32862049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of virulence: the rise and fall of gastrointestinal pathogens.
    Kitamoto S; Nagao-Kitamoto H; Kuffa P; Kamada N
    J Gastroenterol; 2016 Mar; 51(3):195-205. PubMed ID: 26553054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indole Signaling at the Host-Microbiota-Pathogen Interface.
    Kumar A; Sperandio V
    mBio; 2019 Jun; 10(3):. PubMed ID: 31164470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Enteric Two-Step: nutritional strategies of bacterial pathogens within the gut.
    Ferreyra JA; Ng KM; Sonnenburg JL
    Cell Microbiol; 2014 Jul; 16(7):993-1003. PubMed ID: 24720567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training host-pathogen protein-protein interaction predictors.
    Basit AH; Abbasi WA; Asif A; Gull S; Minhas FUAA
    J Bioinform Comput Biol; 2018 Aug; 16(4):1850014. PubMed ID: 30060698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research in a time of enteroids and organoids: how the human gut model has transformed the study of enteric bacterial pathogens.
    Ranganathan S; Smith EM; Foulke-Abel JD; Barry EM
    Gut Microbes; 2020 Nov; 12(1):1795492. PubMed ID: 32795243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial Adrenergic Sensors Regulate Virulence of Enteric Pathogens in the Gut.
    Moreira CG; Russell R; Mishra AA; Narayanan S; Ritchie JM; Waldor MK; Curtis MM; Winter SE; Weinshenker D; Sperandio V
    mBio; 2016 Jun; 7(3):. PubMed ID: 27273829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Host-adapted metabolism and its regulation in bacterial pathogens.
    Dandekar T; Eisenreich W
    Front Cell Infect Microbiol; 2015; 5():28. PubMed ID: 25870851
    [No Abstract]   [Full Text] [Related]  

  • 18. Gut microbiome of endangered Tor putitora (Ham.) as a reservoir of antibiotic resistance genes and pathogens associated with fish health.
    Khurana H; Singh DN; Singh A; Singh Y; Lal R; Negi RK
    BMC Microbiol; 2020 Aug; 20(1):249. PubMed ID: 32787773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between fecal gut microbiome, enteric pathogens, and energy regulating hormones among acutely malnourished rural Gambian children.
    Nabwera HM; Espinoza JL; Worwui A; Betts M; Okoi C; Sesay AK; Bancroft R; Agbla SC; Jarju S; Bradbury RS; Colley M; Jallow AT; Liu J; Houpt ER; Prentice AM; Antonio M; Bernstein RM; Dupont CL; Kwambana-Adams BA
    EBioMedicine; 2021 Nov; 73():103644. PubMed ID: 34695658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling metabolism of the human gut microbiome.
    Magnúsdóttir S; Thiele I
    Curr Opin Biotechnol; 2018 Jun; 51():90-96. PubMed ID: 29258014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.