BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31881969)

  • 21. The computer simulation of RNA folding involving pseudoknot formation.
    Gultyaev AP
    Nucleic Acids Res; 1991 May; 19(9):2489-94. PubMed ID: 1710358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ProbKnot: fast prediction of RNA secondary structure including pseudoknots.
    Bellaousov S; Mathews DH
    RNA; 2010 Oct; 16(10):1870-80. PubMed ID: 20699301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A permutation based simulated annealing algorithm to predict pseudoknotted RNA secondary structures.
    Tsang HH; Wiese KC
    Int J Bioinform Res Appl; 2015; 11(5):375-96. PubMed ID: 26558299
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TT2NE: a novel algorithm to predict RNA secondary structures with pseudoknots.
    Bon M; Orland H
    Nucleic Acids Res; 2011 Aug; 39(14):e93. PubMed ID: 21593129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting RNA secondary structures with arbitrary pseudoknots by maximizing the number of stacking pairs.
    Ieong S; Kao MY; Lam TW; Sung WK; Yiu SM
    J Comput Biol; 2003; 10(6):981-95. PubMed ID: 14980021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics.
    Reeder J; Giegerich R
    BMC Bioinformatics; 2004 Aug; 5():104. PubMed ID: 15294028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. McGenus: a Monte Carlo algorithm to predict RNA secondary structures with pseudoknots.
    Bon M; Micheletti C; Orland H
    Nucleic Acids Res; 2013 Feb; 41(3):1895-900. PubMed ID: 23248008
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PseudoBase++: an extension of PseudoBase for easy searching, formatting and visualization of pseudoknots.
    Taufer M; Licon A; Araiza R; Mireles D; van Batenburg FH; Gultyaev AP; Leung MY
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D127-35. PubMed ID: 18988624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA pseudoknot prediction in energy-based models.
    Lyngsø RB; Pedersen CN
    J Comput Biol; 2000; 7(3-4):409-27. PubMed ID: 11108471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RnaPredict--an evolutionary algorithm for RNA secondary structure prediction.
    Wiese K; Deschenes A; Hendriks A
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(1):25-41. PubMed ID: 18245873
    [TBL] [Abstract][Full Text] [Related]  

  • 31. IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming.
    Sato K; Kato Y; Hamada M; Akutsu T; Asai K
    Bioinformatics; 2011 Jul; 27(13):i85-93. PubMed ID: 21685106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Irreducibility in RNA structures.
    Jin EY; Reidys CM
    Bull Math Biol; 2010 Feb; 72(2):375-99. PubMed ID: 19890676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effective alignment of RNA pseudoknot structures using partition function posterior log-odds scores.
    Song Y; Hua L; Shapiro BA; Wang JT
    BMC Bioinformatics; 2015 Feb; 16():39. PubMed ID: 25727492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequence-structure relations of pseudoknot RNA.
    Huang FW; Li LY; Reidys CM
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S39. PubMed ID: 19208140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bi-objective integer programming for RNA secondary structure prediction with pseudoknots.
    Legendre A; Angel E; Tahi F
    BMC Bioinformatics; 2018 Jan; 19(1):13. PubMed ID: 29334887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A procedure for RNA pseudoknot prediction.
    Chen JH; Le SY; Maizel JV
    Comput Appl Biosci; 1992 Jun; 8(3):243-8. PubMed ID: 1378773
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of RNA pseudoknots using heuristic modeling with mapping and sequential folding.
    Dawson WK; Fujiwara K; Kawai G
    PLoS One; 2007 Sep; 2(9):e905. PubMed ID: 17878940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct Inference of Base-Pairing Probabilities with Neural Networks Improves Prediction of RNA Secondary Structures with Pseudoknots.
    Akiyama M; Sakakibara Y; Sato K
    Genes (Basel); 2022 Nov; 13(11):. PubMed ID: 36421829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Revolutions in RNA secondary structure prediction.
    Mathews DH
    J Mol Biol; 2006 Jun; 359(3):526-32. PubMed ID: 16500677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crumple: a method for complete enumeration of all possible pseudoknot-free RNA secondary structures.
    Bleckley S; Stone JW; Schroeder SJ
    PLoS One; 2012; 7(12):e52414. PubMed ID: 23300665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.