These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31882091)

  • 1. Feasibility of using integrated fingerprinting, profiling and chemometrics approach to understand (bio) chemical changes throughout commercial red winemaking: A case study on Merlot.
    Arcena MR; Kebede B; Leong SY; Silcock P; Oey I
    Food Res Int; 2020 Jan; 127():108767. PubMed ID: 31882091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pH adjustment of Vitis amurensis dry red wine revealed the evolution of organic acids, volatomics, and sensory quality during winemaking.
    Tian MB; Hu RQ; Liu ZL; Shi N; Lu HC; Duan CQ; Wang J; Sun YF; Kong QS; He F
    Food Chem; 2024 Mar; 436():137730. PubMed ID: 37862992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast strain affects phenolic concentration in Pinot noir wines made by microwave maceration with early pressing.
    Carew AL; Close DC; Dambergs RG
    J Appl Microbiol; 2015 Jun; 118(6):1385-94. PubMed ID: 25728037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processes and purposes of extraction of grape components during winemaking: current state and perspectives.
    Unterkofler J; Muhlack RA; Jeffery DW
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4737-4755. PubMed ID: 32285174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in phenolic compounds of Aragon red wines during alcoholic fermentation.
    Puértolas E; Alvarez I; Raso J
    Food Sci Technol Int; 2011 Apr; 17(2):77-86. PubMed ID: 21421675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the concentration of yeast-derived volatile compounds of red wine during malolactic fermentation with four commercial starter cultures of Oenococcus oeni.
    Ugliano M; Moio L
    J Agric Food Chem; 2005 Dec; 53(26):10134-9. PubMed ID: 16366706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association between modification of phenolic profiling and development of wine color during alcohol fermentation.
    Li SY; Liu PT; Pan QH; Shi Y; Duan CQ
    J Food Sci; 2015 Apr; 80(4):C703-10. PubMed ID: 25807971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of simultaneous and sequential malolactic fermentation in durian wine.
    Taniasuri F; Lee PR; Liu SQ
    Int J Food Microbiol; 2016 Aug; 230():1-9. PubMed ID: 27104664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of maceration time on free and bound volatiles of red wines from cv. Karaoğlan (Vitis vinifera L.) grapes grown in Arapgir, Turkey.
    Yilmaztekin M; Kocabey N; Hayaloglu AA
    J Food Sci; 2015 Mar; 80(3):C556-63. PubMed ID: 25677953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-fermentation of red grapes and white pomace: A natural and economical process to modulate hybrid wine composition.
    Nicolle P; Marcotte C; Angers P; Pedneault K
    Food Chem; 2018 Mar; 242():481-490. PubMed ID: 29037718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre-fermentative cold maceration, saignée, and various thermal treatments as options for modulating volatile aroma and phenol profiles of red wine.
    Lukić I; Budić-Leto I; Bubola M; Damijanić K; Staver M
    Food Chem; 2017 Jun; 224():251-261. PubMed ID: 28159263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of bacterial strain and aging on the secondary volatile metabolites produced during malolactic fermentation of tannat red wine.
    Boido E; Medina K; Fariña L; Carrau F; Versini G; Dellacassa E
    J Agric Food Chem; 2009 Jul; 57(14):6271-8. PubMed ID: 19548685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical modelling of anthocyanin mass transfer to predict extraction in simulated red wine fermentation scenarios.
    Setford PC; Jeffery DW; Grbin PR; Muhlack RA
    Food Res Int; 2019 Jul; 121():705-713. PubMed ID: 31108799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the impact of the addition of antimicrobial plant extracts to wine: volatile and phenolic composition.
    García-Ruiz A; Rodríguez-Bencomo JJ; Garrido I; Martín-Álvarez PJ; Moreno-Arribas MV; Bartolomé B
    J Sci Food Agric; 2013 Aug; 93(10):2507-16. PubMed ID: 23483568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of alternative technique to ageing using oak chips in alcoholic or in malolactic fermentation on volatile and sensory composition of red wines.
    Gómez García-Carpintero E; Gómez Gallego MA; Sánchez-Palomo E; González Viñas MA
    Food Chem; 2012 Sep; 134(2):851-63. PubMed ID: 23107700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volatile compounds formation in alcoholic fermentation from grapes collected at 2 maturation stages: influence of nitrogen compounds and grape variety.
    Martínez-Gil AM; Garde-Cerdán T; Lorenzo C; Lara JF; Pardo F; Salinas MR
    J Food Sci; 2012 Jan; 77(1):C71-9. PubMed ID: 22260103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination of cherry wines based on their sensory properties and aromatic fingerprinting using HS-SPME-GC-MS and multivariate analysis.
    Xiao Z; Liu S; Gu Y; Xu N; Shang Y; Zhu J
    J Food Sci; 2014 Mar; 79(3):C284-94. PubMed ID: 24611827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From grape to wine: Changes in phenolic composition and its influence on antioxidant activity.
    Lingua MS; Fabani MP; Wunderlin DA; Baroni MV
    Food Chem; 2016 Oct; 208():228-38. PubMed ID: 27132844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of different strains of Oenococcus oeni malolactic bacteria on profile of organic acids and phenolic compounds of red wine cultivars Rondo and Regent growing in a cold region.
    Wojdyło A; Samoticha J; Chmielewska J
    J Food Sci; 2020 Apr; 85(4):1070-1081. PubMed ID: 32125714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grape contribution to wine aroma: production of hexyl acetate, octyl acetate, and benzyl acetate during yeast fermentation is dependent upon precursors in the must.
    Dennis EG; Keyzers RA; Kalua CM; Maffei SM; Nicholson EL; Boss PK
    J Agric Food Chem; 2012 Mar; 60(10):2638-46. PubMed ID: 22332880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.