BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31882118)

  • 1. An inducible system for in vitro and in vivo Fas activation using FKBP-FRB-rapamycin complex.
    Kim S; Shin J; Oh H; Ahn S; Kim N; Heo WD
    Biochem Biophys Res Commun; 2020 Mar; 523(2):473-480. PubMed ID: 31882118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanding the Chemogenetic Toolbox by Circular Permutation.
    Lee YT; He L; Zhou Y
    J Mol Biol; 2020 May; 432(10):3127-3136. PubMed ID: 32277990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP-FRB Interaction and Autophagy.
    Parada CA; de Oliveira IP; Gewehr MCF; Machado-Neto JA; Lima K; Eichler RAS; Lopes LR; Bechara LRG; Ferreira JCB; Festuccia WT; Censoni L; Tersariol ILS; Ferro ES
    Cells; 2022 Jan; 11(3):. PubMed ID: 35159195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the FKBP.rapamycin.FRB ternary complex.
    Banaszynski LA; Liu CW; Wandless TJ
    J Am Chem Soc; 2005 Apr; 127(13):4715-21. PubMed ID: 15796538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological constraints limit the use of rapamycin-inducible FKBP12-Inp54p for depleting PIP2 in dorsal root ganglia neurons.
    Coutinho-Budd JC; Snider SB; Fitzpatrick BJ; Rittiner JE; Zylka MJ
    J Negat Results Biomed; 2013 Sep; 12():13. PubMed ID: 24010830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.
    Inobe T; Nukina N
    J Biosci Bioeng; 2016 Jul; 122(1):40-6. PubMed ID: 26777239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free Single-Molecule Quantification of Rapamycin-induced FKBP-FRB Dimerization for Direct Control of Cellular Mechanotransduction.
    Wang Y; Barnett SFH; Le S; Guo Z; Zhong X; Kanchanawong P; Yan J
    Nano Lett; 2019 Oct; 19(10):7514-7525. PubMed ID: 31466449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rapamycin-binding domain of the protein kinase mammalian target of rapamycin is a destabilizing domain.
    Edwards SR; Wandless TJ
    J Biol Chem; 2007 May; 282(18):13395-401. PubMed ID: 17350953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of Extracellular Vesicles for Small Molecule-Regulated Cargo Loading and Cytoplasmic Delivery of Bioactive Proteins.
    Somiya M; Kuroda S
    Mol Pharm; 2022 Jul; 19(7):2495-2505. PubMed ID: 35594496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A photocleavable rapamycin conjugate for spatiotemporal control of small GTPase activity.
    Umeda N; Ueno T; Pohlmeyer C; Nagano T; Inoue T
    J Am Chem Soc; 2011 Jan; 133(1):12-4. PubMed ID: 21142151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell surface tagging and a suicide mechanism in a single chimeric human protein.
    Amara JF; Courage NL; Gilman M
    Hum Gene Ther; 1999 Nov; 10(16):2651-5. PubMed ID: 10566892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NEX-TRAP, a novel method for in vivo analysis of nuclear export of proteins.
    Raschbichler V; Lieber D; Bailer SM
    Traffic; 2012 Oct; 13(10):1326-34. PubMed ID: 22708827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatio-temporal manipulation of small GTPase activity at subcellular level and on timescale of seconds in living cells.
    DeRose R; Pohlmeyer C; Umeda N; Ueno T; Nagano T; Kuo S; Inoue T
    J Vis Exp; 2012 Mar; (61):. PubMed ID: 22433289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vulnerability of mouse cortical neurons to doxorubicin-induced apoptosis is strain-dependent and is correlated with mRNAs encoding Fas, Fas-Ligand, and metalloproteinases.
    Wetzel M; Tibbitts J; Rosenberg GA; Cunningham LA
    Apoptosis; 2004 Sep; 9(5):649-56. PubMed ID: 15314293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered Extracellular Vesicles with Compound-Induced Cargo Delivery to Solid Tumors.
    Kim R; Kim JH
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational design and implementation of a chemically inducible heterotrimerization system.
    Wu HD; Kikuchi M; Dagliyan O; Aragaki AK; Nakamura H; Dokholyan NV; Umehara T; Inoue T
    Nat Methods; 2020 Sep; 17(9):928-936. PubMed ID: 32747768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel conditional Akt 'survival switch' reversibly protects cells from apoptosis.
    Li B; Desai SA; MacCorkle-Chosnek RA; Fan L; Spencer DM
    Gene Ther; 2002 Feb; 9(4):233-44. PubMed ID: 11896462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapamycin-based inducible translocation systems for studying phagocytosis.
    Bohdanowicz M; Fairn GD
    Methods Mol Biol; 2011; 748():183-93. PubMed ID: 21701975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccharomyces cerevisiae FKBP12 binds Arabidopsis thaliana TOR and its expression in plants leads to rapamycin susceptibility.
    Sormani R; Yao L; Menand B; Ennar N; Lecampion C; Meyer C; Robaglia C
    BMC Plant Biol; 2007 Jun; 7():26. PubMed ID: 17543119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct involvement of the receptor-mediated apoptotic pathways in cisplatin-induced renal tubular cell death.
    Tsuruya K; Ninomiya T; Tokumoto M; Hirakawa M; Masutani K; Taniguchi M; Fukuda K; Kanai H; Kishihara K; Hirakata H; Iida M
    Kidney Int; 2003 Jan; 63(1):72-82. PubMed ID: 12472770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.