BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31882118)

  • 81. Fas (Apo-1/CD95) and Fas ligand interaction between gastric cancer cells and immune cells.
    Lee TB; Min YD; Lim SC; Kim KJ; Jeon HJ; Choi SM; Choi CH
    J Gastroenterol Hepatol; 2002 Jan; 17(1):32-8. PubMed ID: 11895550
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Role of p38 mitogen-activated protein kinase phosphorylation and Fas-Fas ligand interaction in morphine-induced macrophage apoptosis.
    Singhal PC; Bhaskaran M; Patel J; Patel K; Kasinath BS; Duraisamy S; Franki N; Reddy K; Kapasi AA
    J Immunol; 2002 Apr; 168(8):4025-33. PubMed ID: 11937560
    [TBL] [Abstract][Full Text] [Related]  

  • 83. An improved bioluminescence resonance energy transfer strategy for imaging intracellular events in single cells and living subjects.
    De A; Loening AM; Gambhir SS
    Cancer Res; 2007 Aug; 67(15):7175-83. PubMed ID: 17671185
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A molecularly engineered split reporter for imaging protein-protein interactions with positron emission tomography.
    Massoud TF; Paulmurugan R; Gambhir SS
    Nat Med; 2010 Aug; 16(8):921-6. PubMed ID: 20639890
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis.
    Bennett M; Macdonald K; Chan SW; Luzio JP; Simari R; Weissberg P
    Science; 1998 Oct; 282(5387):290-3. PubMed ID: 9765154
    [TBL] [Abstract][Full Text] [Related]  

  • 86. CD95/Fas signaling in T lymphocytes induces the cell cycle control protein p21cip-1/WAF-1, which promotes apoptosis.
    Hingorani R; Bi B; Dao T; Bae Y; Matsuzawa A; Crispe IN
    J Immunol; 2000 Apr; 164(8):4032-6. PubMed ID: 10754295
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Daxx, a novel Fas-binding protein that activates JNK and apoptosis.
    Yang X; Khosravi-Far R; Chang HY; Baltimore D
    Cell; 1997 Jun; 89(7):1067-76. PubMed ID: 9215629
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Regulation of the Fas death pathway by FLICE-inhibitory protein in primary human B cells.
    Hennino A; Berard M; Casamayor-Pallejà M; Krammer PH; Defrance T
    J Immunol; 2000 Sep; 165(6):3023-30. PubMed ID: 10975811
    [TBL] [Abstract][Full Text] [Related]  

  • 89. β-elemene induces caspase-dependent apoptosis in human glioma cells in vitro through the upregulation of Bax and Fas/ FasL and downregulation of Bcl-2.
    Li CL; Chang L; Guo L; Zhao D; Liu HB; Wang QS; Zhang P; Du WZ; Liu X; Zhang HT; Liu Y; Zhang Y; Xie JH; Ming JG; Cui YQ; Sun Y; Zhang ZR; Jiang CL
    Asian Pac J Cancer Prev; 2014; 15(23):10407-12. PubMed ID: 25556484
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Fas/tumor necrosis factor receptor death signaling is required for axotomy-induced death of motoneurons in vivo.
    Ugolini G; Raoul C; Ferri A; Haenggeli C; Yamamoto Y; Salaün D; Henderson CE; Kato AC; Pettmann B; Hueber AO
    J Neurosci; 2003 Sep; 23(24):8526-31. PubMed ID: 13679421
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization.
    Xu T; Johnson CA; Gestwicki JE; Kumar A
    Nat Protoc; 2010 Nov; 5(11):1831-43. PubMed ID: 21030958
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Visualizing protein-protein interactions in plants by rapamycin-dependent delocalization.
    Winkler J; Mylle E; De Meyer A; Pavie B; Merchie J; Grones P; Van Damme DL
    Plant Cell; 2021 May; 33(4):1101-1117. PubMed ID: 33793859
    [TBL] [Abstract][Full Text] [Related]  

  • 93. A Novel Assay to Identify the Trafficking Proteins that Bind to Specific Vesicle Populations.
    Bentley M; Banker G
    Curr Protoc Cell Biol; 2015 Dec; 69():13.8.1-13.8.12. PubMed ID: 26621371
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Introducing inducible fluorescent split cholesterol oxidase to mammalian cells.
    Chernov KG; Neuvonen M; Brock I; Ikonen E; Verkhusha VV
    J Biol Chem; 2017 May; 292(21):8811-8822. PubMed ID: 28391244
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Targeted protein oxidation using a chromophore-modified rapamycin analog.
    Courtney TM; Hankinson CP; Horst TJ; Deiters A
    Chem Sci; 2021 Oct; 12(40):13425-13433. PubMed ID: 34777761
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Combining DNA scaffolds and acoustic force spectroscopy to characterize individual protein bonds.
    Wang YJ; Valotteau C; Aimard A; Villanueva L; Kostrz D; Follenfant M; Strick T; Chames P; Rico F; Gosse C; Limozin L
    Biophys J; 2023 Jun; 122(12):2518-2530. PubMed ID: 37290437
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Controlling the Subcellular Localization of Signaling Proteins Using Chemically Induced Dimerization and Optogenetics.
    Beshay M; Deng Y; Janetopoulos C
    Methods Mol Biol; 2024; 2814():107-118. PubMed ID: 38954201
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Membrane tethering of CreER decreases uninduced cell labeling and cytotoxicity while maintaining recombination efficiency.
    Chen M; Tian X; Xu L; Wu R; He H; Zhu H; Xu W; Wei CJ
    Mol Ther Nucleic Acids; 2022 Mar; 27():1078-1091. PubMed ID: 35228901
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Rapid inactivation of proteins by knocksideways.
    Robinson MS; Hirst J
    Curr Protoc Cell Biol; 2013 Dec; 61():15.20.1-15.20.7. PubMed ID: 24510805
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology.
    DeRose R; Miyamoto T; Inoue T
    Pflugers Arch; 2013 Mar; 465(3):409-17. PubMed ID: 23299847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.