BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31882455)

  • 1. A SAC Phosphoinositide Phosphatase Controls Rice Development via Hydrolyzing PI4P and PI(4,5)P
    Guo T; Chen HC; Lu ZQ; Diao M; Chen K; Dong NQ; Shan JX; Ye WW; Huang S; Lin HX
    Plant Physiol; 2020 Mar; 182(3):1346-1358. PubMed ID: 31882455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging of Intracellular and Plasma Membrane Pools of PI(4,5)P
    Bura A; Jurak Begonja A
    Life (Basel); 2021 Dec; 11(12):. PubMed ID: 34947862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns(4,5)P2 and constitutive expression of the stress-response pathway.
    Williams ME; Torabinejad J; Cohick E; Parker K; Drake EJ; Thompson JE; Hortter M; Dewald DB
    Plant Physiol; 2005 Jun; 138(2):686-700. PubMed ID: 15923324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity.
    Hammond GR; Fischer MJ; Anderson KE; Holdich J; Koteci A; Balla T; Irvine RF
    Science; 2012 Aug; 337(6095):727-30. PubMed ID: 22722250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. INPP5E Regulates the Distribution of Phospholipids on Cilia in RPE1 Cells.
    Zhai D; Li L; Chen C; Wang X; Liu R; Shan Y
    J Clin Lab Anal; 2024 Apr; 38(7):e25031. PubMed ID: 38514901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The expanding roles of PI4P and PI(4,5)P
    Cockcroft S
    Biochim Biophys Acta Mol Cell Biol Lipids; 2024 Mar; 1869(2):159394. PubMed ID: 37714261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphatidylinositol 3,4-bisphosphate: Out of the shadows and into the spotlight.
    Ray J; Sapp DG; Fairn GD
    Curr Opin Cell Biol; 2024 Jun; 88():102372. PubMed ID: 38776601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoinositide species and filamentous actin formation mediate engulfment by senescent tumor cells.
    Frey WD; Anderson AY; Lee H; Nguyen JB; Cowles EL; Lu H; Jackson JG
    PLoS Biol; 2022 Oct; 20(10):e3001858. PubMed ID: 36279312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoinositide detection at synapses of fixed murine hippocampal neurons.
    Bolz S; Kaempf N; Muehlbauer M; Löwe D; Haucke V
    STAR Protoc; 2024 Apr; 5(2):102945. PubMed ID: 38573863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of Novel Bicyclic Pyrazoles as Potent PIP5K1C Inhibitors.
    Ochiai K; Seto S; Yajima M; Namie R; Hashimoto N; Fujita M; Yokoyama A; Suezawa T; Matsui H; Tomizawa S; Ishibashi Y; Tanaka Y; Yajima M; Nagasawa M; Ando N
    ACS Med Chem Lett; 2024 May; 15(5):684-690. PubMed ID: 38746884
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Guo T; Lu ZQ; Shan JX; Ye WW; Dong NQ; Lin HX
    Plant Cell; 2020 Sep; 32(9):2763-2779. PubMed ID: 32616661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice.
    Dong NQ; Sun Y; Guo T; Shi CL; Zhang YM; Kan Y; Xiang YH; Zhang H; Yang YB; Li YC; Zhao HY; Yu HX; Lu ZQ; Wang Y; Ye WW; Shan JX; Lin HX
    Nat Commun; 2020 May; 11(1):2629. PubMed ID: 32457405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative trait locus GW6 controls rice grain size and yield through the gibberellin pathway.
    Shi CL; Dong NQ; Guo T; Ye WW; Shan JX; Lin HX
    Plant J; 2020 Aug; 103(3):1174-1188. PubMed ID: 32365409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PINOID-centered genetic interactions mediate auxin action in cotyledon formation.
    Zeng W; Wang X; Li M
    Plant Direct; 2024 May; 8(5):e587. PubMed ID: 38766507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dysfunction of duplicated pair rice histone acetyltransferases causes segregation distortion and an interspecific reproductive barrier.
    Liao B; Xiang YH; Li Y; Yang KY; Shan JX; Ye WW; Dong NQ; Kan Y; Yang YB; Zhao HY; Yu HX; Lu ZQ; Zhao Y; Zhao Q; Guo D; Guo SQ; Lei JJ; Mu XR; Cao YJ; Han B; Lin HX
    Nat Commun; 2024 Feb; 15(1):996. PubMed ID: 38307858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-model genome-wide association studies of leaf anatomical traits and vein architecture in rice.
    Narawatthana S; Phansenee Y; Thammasamisorn BO; Vejchasarn P
    Front Plant Sci; 2023; 14():1107718. PubMed ID: 37123816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of rice panicle architecture by specifically suppressing ligand-receptor pairs.
    Guo T; Lu ZQ; Xiong Y; Shan JX; Ye WW; Dong NQ; Kan Y; Yang YB; Zhao HY; Yu HX; Guo SQ; Lei JJ; Liao B; Chai J; Lin HX
    Nat Commun; 2023 Mar; 14(1):1640. PubMed ID: 36964129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-Genome Sequencing of KMR3 and
    Thummala SR; Guttikonda H; Tiwari S; Ramanan R; Baisakh N; Neelamraju S; Mangrauthia SK
    Front Plant Sci; 2022; 13():810373. PubMed ID: 35712577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functions and Mechanisms of SAC Phosphoinositide Phosphatases in Plants.
    Mao Y; Tan S
    Front Plant Sci; 2021; 12():803635. PubMed ID: 34975993
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.