These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31882781)

  • 1. Carrier Induced Hopping to Band Conduction in Pentacene.
    Rani V; Kumar P; Sharma A; Yadav S; Singh B; Ray N; Ghosh S
    Sci Rep; 2019 Dec; 9(1):20193. PubMed ID: 31882781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures.
    Saeki A; Koizumi Y; Aida T; Seki S
    Acc Chem Res; 2012 Aug; 45(8):1193-202. PubMed ID: 22676381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiently predicting directional carrier mobilities in organic materials with the Boltzmann transport equation.
    Knepp ZJ; Masso GB; Fredin LA
    J Chem Phys; 2023 Feb; 158(6):064704. PubMed ID: 36792516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal crossover from band to hopping conduction in molecular organic semiconductors.
    Schön JH; Kloc C; Batlogg B
    Phys Rev Lett; 2001 Apr; 86(17):3843-6. PubMed ID: 11329338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dichotomy between the band and hopping transport in organic crystals: insights from experiments.
    Yavuz I
    Phys Chem Chem Phys; 2017 Oct; 19(38):25819-25828. PubMed ID: 28932847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A competitive hopping model for carrier transport in disordered organic semiconductors.
    Zhao C; Li C; Duan L
    Phys Chem Chem Phys; 2019 May; 21(19):9905-9911. PubMed ID: 31038510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crossover from hopping to band-like transport in crystalline organic semiconductors: The effect of shallow traps.
    Dong J; Wu C
    J Chem Phys; 2019 Jan; 150(4):044903. PubMed ID: 30709264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Band-like temperature dependence of mobility in a solution-processed organic semiconductor.
    Sakanoue T; Sirringhaus H
    Nat Mater; 2010 Sep; 9(9):736-40. PubMed ID: 20729848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulation based on dynamic disorder model in organic semiconductors: from coherent to incoherent transport.
    Yao Y; Si W; Hou X; Wu CQ
    J Chem Phys; 2012 Jun; 136(23):234106. PubMed ID: 22779580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning charge transport in solution-sheared organic semiconductors using lattice strain.
    Giri G; Verploegen E; Mannsfeld SC; Atahan-Evrenk S; Kim DH; Lee SY; Becerril HA; Aspuru-Guzik A; Toney MF; Bao Z
    Nature; 2011 Dec; 480(7378):504-8. PubMed ID: 22193105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bandlike motion and mobility saturation in organic molecular semiconductors.
    Fratini S; Ciuchi S
    Phys Rev Lett; 2009 Dec; 103(26):266601. PubMed ID: 20366327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unusual thermoelectric behavior indicating a hopping to bandlike transport transition in pentacene.
    Germs WC; Guo K; Janssen RA; Kemerink M
    Phys Rev Lett; 2012 Jul; 109(1):016601. PubMed ID: 23031122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic charge-mobility in benzothieno[3,2-b][1]benzothiophene (BTBT) organic semiconductors is enhanced with long alkyl side-chains.
    Alkan M; Yavuz I
    Phys Chem Chem Phys; 2018 Jun; 20(23):15970-15979. PubMed ID: 29850708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conduction band structure of high-mobility organic semiconductors and partially dressed polaron formation.
    Sato H; Abd Rahman SA; Yamada Y; Ishii H; Yoshida H
    Nat Mater; 2022 Aug; 21(8):910-916. PubMed ID: 35851148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hopping and band mobilities of pentacene, rubrene, and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from first principle calculations.
    Kobayashi H; Kobayashi N; Hosoi S; Koshitani N; Murakami D; Shirasawa R; Kudo Y; Hobara D; Tokita Y; Itabashi M
    J Chem Phys; 2013 Jul; 139(1):014707. PubMed ID: 23822320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing Carrier Transport and Structure-Property Relationship of Highly Ordered Organic Semiconductors at the Two-Dimensional Limit.
    Zhang Y; Qiao J; Gao S; Hu F; He D; Wu B; Yang Z; Xu B; Li Y; Shi Y; Ji W; Wang P; Wang X; Xiao M; Xu H; Xu JB; Wang X
    Phys Rev Lett; 2016 Jan; 116(1):016602. PubMed ID: 26799035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible Surface Hopping Approach to Model the Crossover from Hopping to Band-like Transport in Organic Crystals.
    Wang L; Beljonne D
    J Phys Chem Lett; 2013 Jun; 4(11):1888-94. PubMed ID: 26283125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intra- and inter-nanocrystal charge transport in nanocrystal films.
    Aigner W; Bienek O; Falcão BP; Ahmed SU; Wiggers H; Stutzmann M; Pereira RN
    Nanoscale; 2018 May; 10(17):8042-8057. PubMed ID: 29670986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bulk charge carrier transport in push-pull type organic semiconductor.
    Karak S; Liu F; Russell TP; Duzhko VV
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20904-12. PubMed ID: 25393015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear quantum tunnelling and carrier delocalization effects to bridge the gap between hopping and bandlike behaviors in organic semiconductors.
    Jiang Y; Zhong X; Shi W; Peng Q; Geng H; Zhao Y; Shuai Z
    Nanoscale Horiz; 2016 Jan; 1(1):53-59. PubMed ID: 32260602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.