These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31882859)

  • 21. Advanced concentration analysis of atom probe tomography data: Local proximity histograms and pseudo-2D concentration maps.
    Felfer P; Cairney J
    Ultramicroscopy; 2018 Jun; 189():61-64. PubMed ID: 29626834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Segmentation of paracentral acute middle maculopathy lesions in spectral-domain optical coherence tomography images through weakly supervised deep convolutional networks.
    Zhang T; Wei Q; Li Z; Meng W; Zhang M; Zhang Z
    Comput Methods Programs Biomed; 2023 Oct; 240():107632. PubMed ID: 37329802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cross-dimensional transfer learning in medical image segmentation with deep learning.
    Messaoudi H; Belaid A; Ben Salem D; Conze PH
    Med Image Anal; 2023 Aug; 88():102868. PubMed ID: 37384952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Image generation by GAN and style transfer for agar plate image segmentation.
    Andreini P; Bonechi S; Bianchini M; Mecocci A; Scarselli F
    Comput Methods Programs Biomed; 2020 Feb; 184():105268. PubMed ID: 31891902
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Znet: Deep Learning Approach for 2D MRI Brain Tumor Segmentation.
    Ottom MA; Rahman HA; Dinov ID
    IEEE J Transl Eng Health Med; 2022; 10():1800508. PubMed ID: 35774412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unsupervised Deep Learning for Bayesian Brain MRI Segmentation.
    Dalca AV; Yu E; Golland P; Fischl B; Sabuncu MR; Iglesias JE
    Med Image Comput Comput Assist Interv; 2019 Oct; 11766():356-365. PubMed ID: 32432231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic intraprostatic lesion segmentation in multiparametric magnetic resonance images with proposed multiple branch UNet.
    Chen Y; Xing L; Yu L; Bagshaw HP; Buyyounouski MK; Han B
    Med Phys; 2020 Dec; 47(12):6421-6429. PubMed ID: 33012016
    [TBL] [Abstract][Full Text] [Related]  

  • 28. JustDeepIt: Software tool with graphical and character user interfaces for deep learning-based object detection and segmentation in image analysis.
    Sun J; Cao W; Yamanaka T
    Front Plant Sci; 2022; 13():964058. PubMed ID: 36275541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep learning based automatic segmentation of metastasis hotspots in thorax bone SPECT images.
    Lin Q; Luo M; Gao R; Li T; Man Z; Cao Y; Wang H
    PLoS One; 2020; 15(12):e0243253. PubMed ID: 33270746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison between two semantic deep learning frameworks for the autosomal dominant polycystic kidney disease segmentation based on magnetic resonance images.
    Bevilacqua V; Brunetti A; Cascarano GD; Guerriero A; Pesce F; Moschetta M; Gesualdo L
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 9):244. PubMed ID: 31830973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of matrix composition based on solute-solute nearest-neighbor distances in atom probe tomography.
    De Geuser F; Lefebvre W
    Microsc Res Tech; 2011 Mar; 74(3):257-63. PubMed ID: 20623755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategies to Reduce the Expert Supervision Required for Deep Learning-Based Segmentation of Histopathological Images.
    Van Eycke YR; Foucart A; Decaestecker C
    Front Med (Lausanne); 2019; 6():222. PubMed ID: 31681779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fully Automated Wound Tissue Segmentation Using Deep Learning on Mobile Devices: Cohort Study.
    Ramachandram D; Ramirez-GarciaLuna JL; Fraser RDJ; Martínez-Jiménez MA; Arriaga-Caballero JE; Allport J
    JMIR Mhealth Uhealth; 2022 Apr; 10(4):e36977. PubMed ID: 35451982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lung segmentation refinement based on optimal surface finding utilizing a hybrid desktop/virtual reality user interface.
    Sun S; Sonka M; Beichel RR
    Comput Med Imaging Graph; 2013 Jan; 37(1):15-27. PubMed ID: 23415254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient contour-based annotation by iterative deep learning for organ segmentation from volumetric medical images.
    Zhuang M; Chen Z; Wang H; Tang H; He J; Qin B; Yang Y; Jin X; Yu M; Jin B; Li T; Kettunen L
    Int J Comput Assist Radiol Surg; 2023 Feb; 18(2):379-394. PubMed ID: 36048319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated red blood cells extraction from holographic images using fully convolutional neural networks.
    Yi F; Moon I; Javidi B
    Biomed Opt Express; 2017 Oct; 8(10):4466-4479. PubMed ID: 29082078
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep-learning approach for automated thickness measurement of epithelial tissue and scab using optical coherence tomography.
    Ji Y; Yang S; Zhou K; Rocliffe HR; Pellicoro A; Cash JL; Wang R; Li C; Huang Z
    J Biomed Opt; 2022 Jan; 27(1):. PubMed ID: 35043611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup.
    Liu Y; Zhang M; Zhong Z; Zeng X
    Med Phys; 2023 Mar; 50(3):1528-1538. PubMed ID: 36057788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automatic left ventricle segmentation from cardiac magnetic resonance images using a capsule network.
    He Y; Qin W; Wu Y; Zhang M; Yang Y; Liu X; Zheng H; Liang D; Hu Z
    J Xray Sci Technol; 2020; 28(3):541-553. PubMed ID: 32176675
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.