These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Modified p-GaN Microwells with Vertically Aligned 2D-MoS Ghosh D; Devi P; Kumar P ACS Appl Mater Interfaces; 2020 Mar; 12(12):13797-13804. PubMed ID: 32150368 [TBL] [Abstract][Full Text] [Related]
3. Highly Efficient Photoelectrochemical Water Splitting Using GaN-Nanowire Photoanode with Tungsten Sulfides. Han S; Noh S; Yu YT; Lee CR; Lee SK; Kim JS ACS Appl Mater Interfaces; 2020 Dec; 12(52):58028-58037. PubMed ID: 33337852 [TBL] [Abstract][Full Text] [Related]
4. In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting. Wu M; Chen WJ; Shen YH; Huang FZ; Li CH; Li SK ACS Appl Mater Interfaces; 2014 Sep; 6(17):15052-60. PubMed ID: 25144940 [TBL] [Abstract][Full Text] [Related]
5. Efficient Photoelectrochemical Water Splitting by Tailoring MoS Sitara E; Nasir H; Mumtaz A; Ehsan MF; Sohail M; Iram S; Bukhari SAB Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33255862 [TBL] [Abstract][Full Text] [Related]
6. Promoting Charge Separation and Injection by Optimizing the Interfaces of GaN:ZnO Photoanode for Efficient Solar Water Oxidation. Wang Z; Zong X; Gao Y; Han J; Xu Z; Li Z; Ding C; Wang S; Li C ACS Appl Mater Interfaces; 2017 Sep; 9(36):30696-30702. PubMed ID: 28832111 [TBL] [Abstract][Full Text] [Related]
7. Improvement in Photoelectrochemical Water Splitting Performance of GaN-nanowire Photoanode Using MXene. Noh S; Shin J; Lee J; Oh HM; Yu YT; Kim JS ACS Appl Mater Interfaces; 2024 Feb; 16(6):8016-8023. PubMed ID: 38294420 [TBL] [Abstract][Full Text] [Related]
8. Interface Engineering of Monolayer MoS Zhang Z; Qian Q; Li B; Chen KJ ACS Appl Mater Interfaces; 2018 May; 10(20):17419-17426. PubMed ID: 29706066 [TBL] [Abstract][Full Text] [Related]
9. Interface engineering of Ta Fu J; Fan Z; Nakabayashi M; Ju H; Pastukhova N; Xiao Y; Feng C; Shibata N; Domen K; Li Y Nat Commun; 2022 Feb; 13(1):729. PubMed ID: 35132086 [TBL] [Abstract][Full Text] [Related]
10. Exploratory Study of Zn Lin H; Long X; Hu J; Qiu Y; Wang Z; Ma M; An Y; Yang S ACS Appl Mater Interfaces; 2018 Apr; 10(13):10918-10926. PubMed ID: 29578676 [TBL] [Abstract][Full Text] [Related]
11. Experimental dataset of nanoporous GaN photoelectrode supported on patterned sapphire substrates for photoelectrochemical water splitting. Li D; Liu J; Wang Y; Wu A; Ruan R; Li Z; Xu Z Data Brief; 2019 Oct; 26():104433. PubMed ID: 31516954 [TBL] [Abstract][Full Text] [Related]
12. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting. Varadhan P; Fu HC; Priante D; Retamal JR; Zhao C; Ebaid M; Ng TK; Ajia I; Mitra S; Roqan IS; Ooi BS; He JH Nano Lett; 2017 Mar; 17(3):1520-1528. PubMed ID: 28177248 [TBL] [Abstract][Full Text] [Related]
13. Three-Dimensional WO Wang Y; Tian W; Chen L; Cao F; Guo J; Li L ACS Appl Mater Interfaces; 2017 Nov; 9(46):40235-40243. PubMed ID: 29067799 [TBL] [Abstract][Full Text] [Related]
14. Integration of Ag Plasmonic Metal and WO Gelija D; Loka C; Goddati M; Bak NH; Lee J; Kim MD ACS Appl Mater Interfaces; 2023 Jul; 15(29):34883-34894. PubMed ID: 37452743 [TBL] [Abstract][Full Text] [Related]
19. In Situ Charge Transfer at the Ag@ZnO Photoelectrochemical Interface toward the High Photocatalytic Performance of H Trang TNQ; Phan TB; Nam ND; Thu VTH ACS Appl Mater Interfaces; 2020 Mar; 12(10):12195-12206. PubMed ID: 32013392 [TBL] [Abstract][Full Text] [Related]
20. Interfacial engineering of 1D/2D heterostructured photoanode for efficient photoelectrochemical water splitting. Wang Z; Qin Y; Wu X; He K; Li X; Wang J Nanotechnology; 2022 Sep; 33(49):. PubMed ID: 35977454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]