These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 31882965)

  • 21. Single-cell transcriptional analysis to uncover regulatory circuits driving cell fate decisions in early mouse development.
    Chen H; Guo J; Mishra SK; Robson P; Niranjan M; Zheng J
    Bioinformatics; 2015 Apr; 31(7):1060-6. PubMed ID: 25416748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mathematical model of mechanotransduction reveals how mechanical memory regulates mesenchymal stem cell fate decisions.
    Peng T; Liu L; MacLean AL; Wong CW; Zhao W; Nie Q
    BMC Syst Biol; 2017 May; 11(1):55. PubMed ID: 28511648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A sperm-specific proteome-scale metabolic network model identifies non-glycolytic genes for energy deficiency in asthenozoospermia.
    Asghari A; Marashi SA; Ansari-Pour N
    Syst Biol Reprod Med; 2017 Apr; 63(2):100-112. PubMed ID: 28085499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integration of probabilistic regulatory networks into constraint-based models of metabolism with applications to Alzheimer's disease.
    Yu H; Blair RH
    BMC Bioinformatics; 2019 Jul; 20(1):386. PubMed ID: 31291905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identifying functional gene regulatory network phenotypes underlying single cell transcriptional variability.
    Park J; Ogunnaike B; Schwaber J; Vadigepalli R
    Prog Biophys Mol Biol; 2015 Jan; 117(1):87-98. PubMed ID: 25433230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphotransfer networks and cellular energetics.
    Dzeja PP; Terzic A
    J Exp Biol; 2003 Jun; 206(Pt 12):2039-47. PubMed ID: 12756286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variable cellular decision-making behavior in a constant synthetic network topology.
    Shah NA; Sarkar CA
    BMC Bioinformatics; 2019 May; 20(1):237. PubMed ID: 31088350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced cell survival of pH-sensitive bioenergetic nucleotide nanoparticles in energy/oxygen-depleted cells and their intranasal delivery for reduced brain infarction.
    Choi YS; Cho DY; Lee HK; Cho JK; Lee DH; Bae YH; Lee JK; Kang HC
    Acta Biomater; 2016 Sep; 41():147-60. PubMed ID: 27245429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into the Physiology and Metabolism of a Mycobacterial Cell in an Energy-Compromised State.
    Patil V; Jain V
    J Bacteriol; 2019 Oct; 201(19):. PubMed ID: 31285242
    [No Abstract]   [Full Text] [Related]  

  • 30. Complex dynamics of chaperone-protein interactions under cellular stress.
    Tsigelny IF; Nigam SK
    Cell Biochem Biophys; 2004; 40(3):263-76. PubMed ID: 15211027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of acclimation temperature and cadmium exposure on cellular energy budgets in the marine mollusk Crassostrea virginica: linking cellular and mitochondrial responses.
    Cherkasov AS; Biswas PK; Ridings DM; Ringwood AH; Sokolova IM
    J Exp Biol; 2006 Apr; 209(Pt 7):1274-84. PubMed ID: 16547299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitochondrial Morphologies Driven by Energy-Consuming Cell Sites in a Spatially and Time-Resolved Quality Model.
    Mellem D; Fischer F; Jaspers S; Wenck H; Rübhausen M
    J Comput Biol; 2019 Jan; 26(1):76-85. PubMed ID: 30204488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonequilibrium thermodynamics and nonlinear kinetics in a cellular signaling switch.
    Qian H; Reluga TC
    Phys Rev Lett; 2005 Jan; 94(2):028101. PubMed ID: 15698232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand.
    Epstein T; Gatenby RA; Brown JS
    PLoS One; 2017; 12(9):e0185085. PubMed ID: 28922380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MicroRNAs Regulate Cellular ATP Levels by Targeting Mitochondrial Energy Metabolism Genes during C2C12 Myoblast Differentiation.
    Siengdee P; Trakooljul N; Murani E; Schwerin M; Wimmers K; Ponsuksili S
    PLoS One; 2015; 10(5):e0127850. PubMed ID: 26010876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ATP-sensitive potassium channels: metabolic sensing and cardioprotection.
    Zingman LV; Alekseev AE; Hodgson-Zingman DM; Terzic A
    J Appl Physiol (1985); 2007 Nov; 103(5):1888-93. PubMed ID: 17641217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism.
    Beard DA
    PLoS Comput Biol; 2006 Sep; 2(9):e107. PubMed ID: 16978045
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ATP regulation in bioproduction.
    Hara KY; Kondo A
    Microb Cell Fact; 2015 Dec; 14():198. PubMed ID: 26655598
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Mathematical model of adaptation of the energy metabolism of a cell. Calculation of the influence of ATP on the activity and concentration of the initiator stage enzyme].
    Kaĭmachnikov NP; Sel'kov EE
    Biofizika; 1977; 22(2):241-6. PubMed ID: 861261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Cellular energy metabolism: physiologic and pathologic aspects].
    Sztark F; Payen JF; Piriou V; Rigoulet M; Ventura-Clapier R; Mazat JP; Leverve X; Janvier G
    Ann Fr Anesth Reanim; 1999 Feb; 18(2):261-9. PubMed ID: 10207603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.