These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 31883190)
21. Comparison of the content and subpopulations of CD3 and CD34 positive cells in bone marrow harvests and G-CSF-mobilized peripheral blood leukapheresis products from healthy adult donors. Hassan HT; Stockschläder M; Schleimer B; Krüger W; Zander AR Transpl Immunol; 1996 Dec; 4(4):319-23. PubMed ID: 8972563 [TBL] [Abstract][Full Text] [Related]
22. Preparation of functionally preserved CD4+ CD25high regulatory T cells from leukapheresis products from ulcerative colitis patients, applicable to regulatory T-cell transfer therapy. Sumida Y; Nakamura K; Kanayama K; Akiho H; Teshima T; Takayanagi R Cytotherapy; 2008; 10(7):698-710. PubMed ID: 18985477 [TBL] [Abstract][Full Text] [Related]
23. Mobilization of peripheral blood stem cells by subcutaneous injections of yeast-derived granulocyte macrophage colony stimulating factor: a phase I-II study. Mangan K; Mullaney M; Klumpp T; Goldberg S; Macdonald J Stem Cells; 1993 Sep; 11(5):445-54. PubMed ID: 8241955 [TBL] [Abstract][Full Text] [Related]
24. Sequential changes in stem cell markers in peripheral blood and leukapheresis samples after injections of recombinant human granulocyte colony-stimulating factor in patients with urogenital malignant solid tumors: a preliminary study. Samma S; Momose H; Ozono S; Hirao Y; Okajima E; Morii T; Nishikawa K; Shimoyama T; Fujimura Y Jpn J Clin Oncol; 1994 Oct; 24(5):269-74. PubMed ID: 7526017 [TBL] [Abstract][Full Text] [Related]
25. Isolation of highly suppressive CD25+FoxP3+ T regulatory cells from G-CSF-mobilized donors with retention of cytotoxic anti-viral CTLs: application for multi-functional immunotherapy post stem cell transplantation. Samuel ER; Beloki L; Newton K; Mackinnon S; Lowdell MW PLoS One; 2014; 9(1):e85911. PubMed ID: 24465783 [TBL] [Abstract][Full Text] [Related]
26. Ex vivo expansion of enriched peripheral blood CD34+ progenitor cells by stem cell factor, interleukin-1 beta (IL-1 beta), IL-6, IL-3, interferon-gamma, and erythropoietin. Brugger W; Möcklin W; Heimfeld S; Berenson RJ; Mertelsmann R; Kanz L Blood; 1993 May; 81(10):2579-84. PubMed ID: 7683923 [TBL] [Abstract][Full Text] [Related]
27. Large-scale depletion of CD25+ regulatory T cells from patient leukapheresis samples. Powell DJ; Parker LL; Rosenberg SA J Immunother; 2005; 28(4):403-11. PubMed ID: 16000960 [TBL] [Abstract][Full Text] [Related]
28. Peripheral blood progenitor cell mobilization with intermediate-dose cyclophosphamide, sequential granulocyte-macrophage-colony-stimulating factor and granulocyte-colony-stimulating factor, and scheduled commencement of leukapheresis in 225 patients undergoing autologous transplantation. Bashey A; Donohue M; Liu L; Medina B; Corringham S; Ihasz A; Carrier E; Castro JE; Holman PR; Xu R; Law P; Ball ED; Lane TA Transfusion; 2007 Nov; 47(11):2153-60. PubMed ID: 17958545 [TBL] [Abstract][Full Text] [Related]
29. Introduction of Human Flt3-L and GM-CSF into Humanized Mice Enhances the Reconstitution and Maturation of Myeloid Dendritic Cells and the Development of Foxp3 Iwabuchi R; Ikeno S; Kobayashi-Ishihara M; Takeyama H; Ato M; Tsunetsugu-Yokota Y; Terahara K Front Immunol; 2018; 9():1042. PubMed ID: 29892279 [TBL] [Abstract][Full Text] [Related]
30. Randomized comparison of granulocyte colony-stimulating factor versus granulocyte-macrophage colony-stimulating factor plus intensive chemotherapy for peripheral blood stem cell mobilization and autologous transplantation in multiple myeloma. Arora M; Burns LJ; Barker JN; Miller JS; Defor TE; Olujohungbe AB; Weisdorf DJ Biol Blood Marrow Transplant; 2004 Jun; 10(6):395-404. PubMed ID: 15148493 [TBL] [Abstract][Full Text] [Related]
31. Incidence of tumor-cell contamination in leukapheresis products of breast cancer patients mobilized with stem cell factor and granulocyte colony-stimulating factor (G-CSF) or with G-CSF alone. Franklin WA; Glaspy J; Pflaumer SM; Jones RB; Hami L; Martinez C; Murphy JR; Shpall EJ Blood; 1999 Jul; 94(1):340-7. PubMed ID: 10381531 [TBL] [Abstract][Full Text] [Related]
32. Enhanced levels and enhanced clonogenic capacity of blood progenitor cells following administration of stem cell factor plus granulocyte colony-stimulating factor to humans. Begley CG; Basser R; Mansfield R; Thomson B; Parker WR; Layton J; To B; Cebon J; Sheridan WP; Fox RM; Green MD Blood; 1997 Nov; 90(9):3378-89. PubMed ID: 9345020 [TBL] [Abstract][Full Text] [Related]
33. Differences in Cellular Composition of Peripheral Blood Stem Cell Grafts from Healthy Stem Cell Donors Mobilized with Either Granulocyte Colony-Stimulating Factor (G-CSF) Alone or G-CSF and Plerixafor. Teipel R; Oelschlägel U; Wetzko K; Schmiedgen M; Kramer M; Rücker-Braun E; Hölig K; von Bonin M; Heidrich K; Fuchs A; Ordemann R; Kroschinsky F; Bornhäuser M; Hütter G; Schmidt H; Ehninger G; Schetelig J; Heidenreich F Biol Blood Marrow Transplant; 2018 Nov; 24(11):2171-2177. PubMed ID: 29935214 [TBL] [Abstract][Full Text] [Related]
34. Comparison of monocyte-dependent T cell inhibitory activity in GM-CSF vs G-CSF mobilized PSC products. Ageitos AG; Varney ML; Bierman PJ; Vose JM; Warkentin PI; Talmadge JE Bone Marrow Transplant; 1999 Jan; 23(1):63-9. PubMed ID: 10037052 [TBL] [Abstract][Full Text] [Related]
35. An innovative method to generate a Good Manufacturing Practice-ready regulatory T-cell product from non-mobilized leukapheresis donors. Zhang W; Smythe J; Frith E; Belfield H; Clarke S; Watt SM; Danby R; Benjamin S; Peniket A; Roberts DJ Cytotherapy; 2015 Sep; 17(9):1268-79. PubMed ID: 26276008 [TBL] [Abstract][Full Text] [Related]
36. Sequential monitoring and stability of ex vivo-expanded autologous and nonautologous regulatory T cells following infusion in nonhuman primates. Zhang H; Guo H; Lu L; Zahorchak AF; Wiseman RW; Raimondi G; Cooper DK; Ezzelarab MB; Thomson AW Am J Transplant; 2015 May; 15(5):1253-66. PubMed ID: 25783759 [TBL] [Abstract][Full Text] [Related]
37. Long-term marrow reconstitutive ability of autologous grafts in lymphoma patients using peripheral blood mobilized with granulocyte colony-stimulating factor or granulocyte-macrophage colony-stimulating factor compared to bone marrow. Benboubker L; Cartron G; Roingeard F; Delain M; Degenne M; Linassier C; Hérault O; Truglio D; Bout M; Petit A; Brémond JL; Desbois I; Colombat P; Binet C; Domenech J Exp Hematol; 2003 Jan; 31(1):89-97. PubMed ID: 12543111 [TBL] [Abstract][Full Text] [Related]
38. Single leukapheresis products collected from healthy donors after the administration of granulocyte colony-stimulating factor contain ten-fold higher numbers of long-term reconstituting hematopoietic progenitor cells than conventional bone marrow allografts. Theilgaard-Mönch K; Raaschou-Jensen K; Andersen H; Russell CA; Vindeløv L; Jacobsen N; Dickmeiss E Bone Marrow Transplant; 1999 Feb; 23(3):243-9. PubMed ID: 10084255 [TBL] [Abstract][Full Text] [Related]
39. IL-10-producing CD4+CD25+ regulatory T cells play a critical role in granulocyte-macrophage colony-stimulating factor-induced suppression of experimental autoimmune thyroiditis. Gangi E; Vasu C; Cheatem D; Prabhakar BS J Immunol; 2005 Jun; 174(11):7006-13. PubMed ID: 15905543 [TBL] [Abstract][Full Text] [Related]
40. The composition of leukapheresis products impacts on the hematopoietic recovery after autologous transplantation independently of the mobilization regimen. Menéndez P; Caballero MD; Prosper F; Del Cañizo MC; Pérez-Simón JA; Mateos MV; Nieto MJ; Corral M; Romero M; García-Conde J; Montalbán MA; San Miguel JF; Orfao A Transfusion; 2002 Sep; 42(9):1159-72. PubMed ID: 12430673 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]