BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31883207)

  • 1. Thermo-acoustic ultrasound for noninvasive temperature monitoring at lead tips during MRI.
    Dixit N; Pauly JM; Scott GC
    Magn Reson Med; 2020 Aug; 84(2):1035-1047. PubMed ID: 31883207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermo-Acoustic Ultrasound for Detection of RF-Induced Device Lead Heating in MRI.
    Dixit N; Stang PP; Pauly JM; Scott GC
    IEEE Trans Med Imaging; 2018 Feb; 37(2):536-546. PubMed ID: 29053449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biopsy marker localization with thermo-acoustic ultrasound for lumpectomy guidance.
    Dixit N; Daniel BL; Hargreaves BA; Pauly JM; Scott GC
    Med Phys; 2021 Oct; 48(10):6069-6079. PubMed ID: 34287972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of RF heating of deep brain stimulation devices in vertical vs. horizontal MRI systems.
    Vu J; Bhusal B; Nguyen BT; Sanpitak P; Nowac E; Pilitsis J; Rosenow J; Golestanirad L
    PLoS One; 2022; 17(12):e0278187. PubMed ID: 36490249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of field strength on RF power deposition near conductive leads: A simulation study of SAR in DBS lead models during MRI at 1.5 T-10.5 T.
    Kazemivalipour E; Sadeghi-Tarakameh A; Keil B; Eryaman Y; Atalar E; Golestanirad L
    PLoS One; 2023; 18(1):e0280655. PubMed ID: 36701285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel transmit excitation at 1.5 T based on the minimization of a driving function for device heating.
    Gudino N; Sonmez M; Yao Z; Baig T; Nielles-Vallespin S; Faranesh AZ; Lederman RJ; Martens M; Balaban RS; Hansen MS; Griswold MA
    Med Phys; 2015 Jan; 42(1):359-71. PubMed ID: 25563276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Machine learning to predict RF heating of cardiac leads during magnetic resonance imaging at 1.5 T and 3 T: A simulation study.
    Chen X; Zheng C; Golestanirad L
    J Magn Reson; 2023 Apr; 349():107384. PubMed ID: 36842429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RF-induced heating for active implantable medical devices in dual parallel leads configurations at 1.5 T MRI.
    Hu W; Guo R; Wang Q; Zheng J; Tsang J; Kainz W; Long S; Chen J
    Magn Reson Med; 2023 Aug; 90(2):686-698. PubMed ID: 37036364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of RF heating on SAR and implant position in a 1.5T MR system.
    Muranaka H; Horiguchi T; Usui S; Ueda Y; Nakamura O; Ikeda F
    Magn Reson Med Sci; 2007; 6(4):199-209. PubMed ID: 18239357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid safety assessment and mitigation of radiofrequency induced implant heating using small root mean square sensors and the sensor matrix Q
    Silemek B; Seifert F; Petzold J; Hoffmann W; Pfeiffer H; Speck O; Rose G; Ittermann B; Winter L
    Magn Reson Med; 2022 Jan; 87(1):509-527. PubMed ID: 34397114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management.
    Golestanirad L; Kirsch J; Bonmassar G; Downs S; Elahi B; Martin A; Iacono MI; Angelone LM; Keil B; Wald LL; Pilitsis J
    Neuroimage; 2019 Jan; 184():566-576. PubMed ID: 30243973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring local heating around an interventional MRI antenna with RF radiometry.
    Ertürk MA; El-Sharkawy AM; Bottomley PA
    Med Phys; 2015 Mar; 42(3):1411-23. PubMed ID: 25735295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RF heating due to conductive wires during MRI depends on the phase distribution of the transmit field.
    Yeung CJ; Susil RC; Atalar E
    Magn Reson Med; 2002 Dec; 48(6):1096-8. PubMed ID: 12465125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical investigations of MRI RF field induced heating for external fixation devices.
    Liu Y; Shen J; Kainz W; Qian S; Wu W; Chen J
    Biomed Eng Online; 2013 Feb; 12():12. PubMed ID: 23394173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An RF dosimeter for independent SAR measurement in MRI scanners.
    Qian D; El-Sharkawy AM; Bottomley PA; Edelstein WA
    Med Phys; 2013 Dec; 40(12):122303. PubMed ID: 24320534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of feasibility of 1.5 Tesla prostate MRI using body coil RF transmit in a patient with an implanted vagus nerve stimulator.
    Favazza CP; Edmonson HA; Ma C; Shu Y; Felmlee JP; Watson RE; Gorny KR
    Med Phys; 2017 Nov; 44(11):5749-5754. PubMed ID: 28880381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Simulations of Realistic Lead Trajectories and an Experimental Verification Support the Efficacy of Parallel Radiofrequency Transmission to Reduce Heating of Deep Brain Stimulation Implants during MRI.
    McElcheran CE; Golestanirad L; Iacono MI; Wei PS; Yang B; Anderson KJT; Bonmassar G; Graham SJ
    Sci Rep; 2019 Feb; 9(1):2124. PubMed ID: 30765724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New method to monitor RF safety in MRI-guided interventions based on RF induced image artefacts.
    van den Bosch MR; Moerland MA; Lagendijk JJ; Bartels LW; van den Berg CA
    Med Phys; 2010 Feb; 37(2):814-21. PubMed ID: 20229891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RF-induced heating of interventional devices at 23.66 MHz.
    Özen AC; Russe MF; Lottner T; Reiss S; Littin S; Zaitsev M; Bock M
    MAGMA; 2023 Jul; 36(3):439-449. PubMed ID: 37195365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting RF Heating of Conductive Leads During Magnetic Resonance Imaging at 1.5 T: A Machine Learning Approach
    Zheng C; Chen X; Nguyen BT; Sanpitak P; Vu J; Bagci U; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4204-4208. PubMed ID: 34892151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.