These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 31883281)
1. Direct investigation of current transport in cells by conductive atomic force microscopy. Zhao W; Cheong LZ; Xu S; Cui W; Song S; Rourk CJ; Shen C J Microsc; 2020 Jan; 277(1):49-57. PubMed ID: 31883281 [TBL] [Abstract][Full Text] [Related]
2. A case study of the electrical properties of astrocytes by multimode AFM. Zhao W; Cheong LZ; Cui W; Xu S; Shen C J Microsc; 2019 Aug; 275(2):75-81. PubMed ID: 31074501 [TBL] [Abstract][Full Text] [Related]
3. Direct investigations of the electrical conductivity of normal and cancer breast cells by conductive atomic force microscopy. Zhao L; Du X; Fang B; Liu Q; Yang H; Li F; Sheng Y; Zeng X; Zhong H; Zhao W Ultramicroscopy; 2022 Jul; 237():113531. PubMed ID: 35447510 [TBL] [Abstract][Full Text] [Related]
4. Lab on a tip: Applications of functional atomic force microscopy for the study of electrical properties in biology. Cheong LZ; Zhao W; Song S; Shen C Acta Biomater; 2019 Nov; 99():33-52. PubMed ID: 31425893 [TBL] [Abstract][Full Text] [Related]
5. Astroglial modulation of transient potassium current development in cultured mouse hippocampal neurons. Wu RL; Barish ME J Neurosci; 1994 Mar; 14(3 Pt 2):1677-87. PubMed ID: 7510334 [TBL] [Abstract][Full Text] [Related]
6. Electrical coupling between hippocampal astrocytes in rat brain slices. Meme W; Vandecasteele M; Giaume C; Venance L Neurosci Res; 2009 Apr; 63(4):236-43. PubMed ID: 19167439 [TBL] [Abstract][Full Text] [Related]
7. Electrical characterization of tumor-derived exosomes by conductive atomic force microscopy. Zhang Y; Ju T; Gao M; Song Z; Xu H; Wang Z; Wang Y Nanotechnology; 2022 Apr; 33(29):. PubMed ID: 35051909 [TBL] [Abstract][Full Text] [Related]
8. The conductive properties of single DNA molecules studied by torsion tunneling atomic force microscopy. Wang W; Niu DX; Jiang CR; Yang XJ Nanotechnology; 2014 Jan; 25(2):025707. PubMed ID: 24334680 [TBL] [Abstract][Full Text] [Related]
9. Development and testing of hyperbaric atomic force microscopy (AFM) and fluorescence microscopy for biological applications. D'Agostino DP; McNally HA; Dean JB J Microsc; 2012 May; 246(2):129-42. PubMed ID: 22455392 [TBL] [Abstract][Full Text] [Related]
10. Self-repair behaviour of the neuronal cell membrane by conductive atomic force indentation. Liu C; Han X; Yang X; Tian L; Wang Y; Wang X; Yang H; Ge Z; Hu C; Liu C; Song Z; Weng Z; Wang Z IET Nanobiotechnol; 2019 Dec; 13(9):891-895. PubMed ID: 31811756 [TBL] [Abstract][Full Text] [Related]
11. Investigation of morphological and functional changes during neuronal differentiation of PC12 cells by combined hopping probe ion conductance microscopy and patch-clamp technique. Yang X; Liu X; Zhang X; Lu H; Zhang J; Zhang Y Ultramicroscopy; 2011 Jul; 111(8):1417-22. PubMed ID: 21864785 [TBL] [Abstract][Full Text] [Related]
12. Membrane deformation of living glial cells using atomic force microscopy. Haydon PG; Lartius R; Parpura V; Marchese-Ragona SP J Microsc; 1996 May; 182(Pt 2):114-20. PubMed ID: 8683560 [TBL] [Abstract][Full Text] [Related]
13. Understanding Current Instabilities in Conductive Atomic Force Microscopy. Jiang L; Weber J; Puglisi FM; Pavan P; Larcher L; Frammelsberger W; Benstetter G; Lanza M Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30717254 [No Abstract] [Full Text] [Related]
14. Astrocytes are crucial for survival and maturation of embryonic hippocampal neurons in a neuron-glia cell-insert coculture assay. Pyka M; Busse C; Seidenbecher C; Gundelfinger ED; Faissner A Synapse; 2011 Jan; 65(1):41-53. PubMed ID: 20506382 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional structural changes in living hippocampal neurons imaged using magnetic AC mode atomic force microscopy. Yunxu S; Danying L; Yanfang R; Dong H; Wanyun M J Electron Microsc (Tokyo); 2006 Jun; 55(3):165-72. PubMed ID: 16775215 [TBL] [Abstract][Full Text] [Related]
16. Expression of voltage-activated ion channels by astrocytes and oligodendrocytes in the hippocampal slice. Sontheimer H; Waxman SG J Neurophysiol; 1993 Nov; 70(5):1863-73. PubMed ID: 7507520 [TBL] [Abstract][Full Text] [Related]
17. Postnatal development of ionic currents in rat hippocampal astrocytes in situ. Bordey A; Sontheimer H J Neurophysiol; 1997 Jul; 78(1):461-77. PubMed ID: 9242294 [TBL] [Abstract][Full Text] [Related]
18. Na(+)-current expression in rat hippocampal astrocytes in vitro: alterations during development. Sontheimer H; Ransom BR; Cornell-Bell AH; Black JA; Waxman SG J Neurophysiol; 1991 Jan; 65(1):3-19. PubMed ID: 1999729 [TBL] [Abstract][Full Text] [Related]
19. Integration of confocal and atomic force microscopy images. Kondra S; Laishram J; Ban J; Migliorini E; Di Foggia V; Lazzarino M; Torre V; Ruaro ME J Neurosci Methods; 2009 Feb; 177(1):94-107. PubMed ID: 18996410 [TBL] [Abstract][Full Text] [Related]
20. Astrocytes regulate the developmental appearance of GABAergic and glutamatergic postsynaptic currents in cultured embryonic rat spinal neurons. Li YX; Schaffner AE; Barker JL Eur J Neurosci; 1999 Jul; 11(7):2537-51. PubMed ID: 10383643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]