BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 31883469)

  • 1. Isoform-selective NADPH oxidase inhibitor panel for pharmacological target validation.
    Dao VT; Elbatreek MH; Altenhöfer S; Casas AI; Pachado MP; Neullens CT; Knaus UG; Schmidt HHHW
    Free Radic Biol Med; 2020 Feb; 148():60-69. PubMed ID: 31883469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NOX Inhibitors: From Bench to Naxibs to Bedside.
    Elbatreek MH; Mucke H; Schmidt HHHW
    Handb Exp Pharmacol; 2021; 264():145-168. PubMed ID: 32780287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement.
    Altenhöfer S; Radermacher KA; Kleikers PW; Wingler K; Schmidt HH
    Antioxid Redox Signal; 2015 Aug; 23(5):406-27. PubMed ID: 24383718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The NOX toolbox: validating the role of NADPH oxidases in physiology and disease.
    Altenhöfer S; Kleikers PW; Radermacher KA; Scheurer P; Rob Hermans JJ; Schiffers P; Ho H; Wingler K; Schmidt HH
    Cell Mol Life Sci; 2012 Jul; 69(14):2327-43. PubMed ID: 22648375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation.
    Kawahara T; Ritsick D; Cheng G; Lambeth JD
    J Biol Chem; 2005 Sep; 280(36):31859-69. PubMed ID: 15994299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADPH oxidase, NOX1, mediates vascular injury in ischemic retinopathy.
    Wilkinson-Berka JL; Deliyanti D; Rana I; Miller AG; Agrotis A; Armani R; Szyndralewiez C; Wingler K; Touyz RM; Cooper ME; Jandeleit-Dahm KA; Schmidt HH
    Antioxid Redox Signal; 2014 Jun; 20(17):2726-40. PubMed ID: 24053718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome P450 enzymes but not NADPH oxidases are the source of the NADPH-dependent lucigenin chemiluminescence in membrane assays.
    Rezende F; Prior KK; Löwe O; Wittig I; Strecker V; Moll F; Helfinger V; Schnütgen F; Kurrle N; Wempe F; Walter M; Zukunft S; Luck B; Fleming I; Weissmann N; Brandes RP; Schröder K
    Free Radic Biol Med; 2017 Jan; 102():57-66. PubMed ID: 27863990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammalian NADPH Oxidases.
    Buvelot H; Jaquet V; Krause KH
    Methods Mol Biol; 2019; 1982():17-36. PubMed ID: 31172464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nox, Nox, Are You There? The Role of NADPH Oxidases in the Peripheral Nervous System.
    Eid SA; Savelieff MG; Eid AA; Feldman EL
    Antioxid Redox Signal; 2022 Sep; 37(7-9):613-630. PubMed ID: 34861780
    [No Abstract]   [Full Text] [Related]  

  • 10. Targeting NADPH oxidases in vascular pharmacology.
    Schramm A; Matusik P; Osmenda G; Guzik TJ
    Vascul Pharmacol; 2012; 56(5-6):216-31. PubMed ID: 22405985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species augment contractile responses of saphenous artery in 10-15-day-old but not adult rats: Substantial role of NADPH oxidases.
    Shvetsova AA; Khlystova MA; Makukha YA; Shateeva VS; Borzykh AA; Gaynullina DK; Tarasova OS
    Free Radic Biol Med; 2024 Apr; 216():24-32. PubMed ID: 38460742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular Biology of Superoxide-Generating NADPH Oxidase 5-Implications in Hypertension and Cardiovascular Disease.
    Touyz RM; Anagnostopoulou A; Camargo LL; Rios FJ; Montezano AC
    Antioxid Redox Signal; 2019 Mar; 30(7):1027-1040. PubMed ID: 30334629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models.
    Rivera J; Sobey CG; Walduck AK; Drummond GR
    Redox Rep; 2010; 15(2):50-63. PubMed ID: 20500986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological characterization of the seven human NOX isoforms and their inhibitors.
    Augsburger F; Filippova A; Rasti D; Seredenina T; Lam M; Maghzal G; Mahiout Z; Jansen-Dürr P; Knaus UG; Doroshow J; Stocker R; Krause KH; Jaquet V
    Redox Biol; 2019 Sep; 26():101272. PubMed ID: 31330481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox regulation of Nox proteins.
    Pendyala S; Natarajan V
    Respir Physiol Neurobiol; 2010 Dec; 174(3):265-71. PubMed ID: 20883826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibiting the Activity of NADPH Oxidase in Cancer.
    Konaté MM; Antony S; Doroshow JH
    Antioxid Redox Signal; 2020 Aug; 33(6):435-454. PubMed ID: 32008376
    [No Abstract]   [Full Text] [Related]  

  • 17. Gene Expression and Prognostic Value of NADPH Oxidase Enzymes in Breast Cancer.
    de Vasconcelos E Souza A; de Faria CC; Pereira LM; Ferreira ACF; Torres PHM; Fortunato RS
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH oxidases and vascular remodeling in cardiovascular diseases.
    García-Redondo AB; Aguado A; Briones AM; Salaices M
    Pharmacol Res; 2016 Dec; 114():110-120. PubMed ID: 27773825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence.
    Tsai IC; Pan ZC; Cheng HP; Liu CH; Lin BT; Jiang MJ
    J Mol Cell Cardiol; 2016 Sep; 98():18-27. PubMed ID: 27381955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial, temporal, and cell-type-specific expression of NADPH Oxidase isoforms following seizure models in rats.
    Saadi A; Sandouka S; Grad E; Singh PK; Shekh-Ahmad T
    Free Radic Biol Med; 2022 Sep; 190():158-168. PubMed ID: 35964838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.