These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 31883549)

  • 1. Exploring Machine Learning Tools for the Prediction of the Stability of New Togni-type Reagents.
    Koichi S; Lüthi HP
    Chimia (Aarau); 2019 Dec; 73(12):990-996. PubMed ID: 31883549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why do the Togni reagent and some of its derivatives exist in the high-energy hypervalent iodine form? New insight into the origins of their kinetic stability.
    Koichi S; Leuthold B; Lüthi HP
    Phys Chem Chem Phys; 2017 Dec; 19(48):32179-32183. PubMed ID: 29186232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the right mechanism for hypervalent iodine reagents by applying two types of hypervalent twist models: apical twist and equatorial twist.
    Sun TY; Chen K; Lin Q; You T; Yin P
    Phys Chem Chem Phys; 2021 Mar; 23(11):6758-6762. PubMed ID: 33711091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bond Strength and Interaction Energies in Togni Reagents: Insights from Molecular Electrostatic Potential-Based Parameters.
    Lohithakshamenon R; Prasanthkumar KP; Femina C; Sajith PK
    J Phys Chem A; 2024 Feb; 128(4):727-737. PubMed ID: 38253016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iodine(III) Reagents in Radical Chemistry.
    Wang X; Studer A
    Acc Chem Res; 2017 Jul; 50(7):1712-1724. PubMed ID: 28636313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic Hypervalent Iodine Reagents: Enabling Tools for Bond Disconnection via Reactivity Umpolung.
    Hari DP; Caramenti P; Waser J
    Acc Chem Res; 2018 Dec; 51(12):3212-3225. PubMed ID: 30485071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relating Bond Strength and Nature to the Thermodynamic Stability of Hypervalent Togni-Type Iodine Compounds.
    Oliveira VP; Marcial BL; Machado FBC; Kraka E
    Chempluschem; 2021 Aug; 86(8):1199-1210. PubMed ID: 34437775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of Intermetallic Compounds from Traditional to Machine-Learning Approaches.
    Oliynyk AO; Mar A
    Acc Chem Res; 2018 Jan; 51(1):59-68. PubMed ID: 29244479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping Perfluoroalkyl Effects in Togni-Type Reagents by Thermolysis.
    Santschi N; Katayev D; Calvo R; Jelier BJ
    Chemphyschem; 2018 Apr; 19(7):816-821. PubMed ID: 29314623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein asparagine deamidation prediction based on structures with machine learning methods.
    Jia L; Sun Y
    PLoS One; 2017; 12(7):e0181347. PubMed ID: 28732052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acceleration of saddle-point searches with machine learning.
    Peterson AA
    J Chem Phys; 2016 Aug; 145(7):074106. PubMed ID: 27544086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shelf-stable electrophilic trifluoromethylating reagents: A brief historical perspective.
    Shibata N; Matsnev A; Cahard D
    Beilstein J Org Chem; 2010 Jun; 6():. PubMed ID: 20703379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach.
    Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK
    Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A probabilistic approach to classifying metabolic stability.
    Schwaighofer A; Schroeter T; Mika S; Hansen K; Ter Laak A; Lienau P; Reichel A; Heinrich N; Müller KR
    J Chem Inf Model; 2008 Apr; 48(4):785-96. PubMed ID: 18327900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hard-Rock Stability Analysis for Span Design in Entry-Type Excavations with Learning Classifiers.
    García-Gonzalo E; Fernández-Muñiz Z; García Nieto PJ; Bernardo Sánchez A; Menéndez Fernández M
    Materials (Basel); 2016 Jun; 9(7):. PubMed ID: 28773653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ADMET Evaluation in Drug Discovery. Part 17: Development of Quantitative and Qualitative Prediction Models for Chemical-Induced Respiratory Toxicity.
    Lei T; Chen F; Liu H; Sun H; Kang Y; Li D; Li Y; Hou T
    Mol Pharm; 2017 Jul; 14(7):2407-2421. PubMed ID: 28595388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-Based Prediction of Cysteine Reactivity Using Machine Learning.
    Wang H; Chen X; Li C; Liu Y; Yang F; Wang C
    Biochemistry; 2018 Jan; 57(4):451-460. PubMed ID: 29072073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing new Togni reagents by computation.
    Jiang H; Sun TY; Chen Y; Zhang X; Wu YD; Xie Y; Schaefer HF
    Chem Commun (Camb); 2019 May; 55(39):5667-5670. PubMed ID: 31032500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of overall in vitro microsomal stability of drug candidates based on molecular modeling and support vector machines. Case study of novel arylpiperazines derivatives.
    Ulenberg S; Belka M; Król M; Herold F; Hewelt-Belka W; Kot-Wasik A; Bączek T
    PLoS One; 2015; 10(3):e0122772. PubMed ID: 25826401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of the kinetically-controlled folding reaction of subtilisin.
    Fisher KE; Ruan B; Alexander PA; Wang L; Bryan PN
    Biochemistry; 2007 Jan; 46(3):640-51. PubMed ID: 17223686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.