These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 31883549)

  • 41. Toward analyzing and synthesizing previous research in early prediction of cardiac arrest using machine learning based on a multi-layered integrative framework.
    Layeghian Javan S; Sepehri MM; Aghajani H
    J Biomed Inform; 2018 Dec; 88():70-89. PubMed ID: 30389440
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Predicting peptide presentation by major histocompatibility complex class I: an improved machine learning approach to the immunopeptidome.
    Boehm KM; Bhinder B; Raja VJ; Dephoure N; Elemento O
    BMC Bioinformatics; 2019 Jan; 20(1):7. PubMed ID: 30611210
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of machine learning approaches for novel drug discovery.
    Lima AN; Philot EA; Trossini GH; Scott LP; Maltarollo VG; Honorio KM
    Expert Opin Drug Discov; 2016; 11(3):225-39. PubMed ID: 26814169
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recent progresses in the exploration of machine learning methods as in-silico ADME prediction tools.
    Tao L; Zhang P; Qin C; Chen SY; Zhang C; Chen Z; Zhu F; Yang SY; Wei YQ; Chen YZ
    Adv Drug Deliv Rev; 2015 Jun; 86():83-100. PubMed ID: 26037068
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prediction of anti-inflammatory proteins/peptides: an insilico approach.
    Gupta S; Sharma AK; Shastri V; Madhu MK; Sharma VK
    J Transl Med; 2017 Jan; 15(1):7. PubMed ID: 28057002
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Why does Togni's reagent I exist in the high-energy hypervalent iodine form? Re-evaluation of benziodoxole based hypervalent iodine reagents.
    Sun TY; Wang X; Geng H; Xie Y; Wu YD; Zhang X; Schaefer HF
    Chem Commun (Camb); 2016 Apr; 52(31):5371-4. PubMed ID: 26932474
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Machine Learning Models for the Hearing Impairment Prediction in Workers Exposed to Complex Industrial Noise: A Pilot Study.
    Zhao Y; Li J; Zhang M; Lu Y; Xie H; Tian Y; Qiu W
    Ear Hear; 2019; 40(3):690-699. PubMed ID: 30142102
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of a sugar-binding residue prediction system from protein sequences using support vector machine.
    Banno M; Komiyama Y; Cao W; Oku Y; Ueki K; Sumikoshi K; Nakamura S; Terada T; Shimizu K
    Comput Biol Chem; 2017 Feb; 66():36-43. PubMed ID: 27889654
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Isomerization and oxygen atom transfer reactivity in oxo-Mo complexes of relevance to molybdoenzymes.
    Hoffman JT; Einwaechter S; Chohan BS; Basu P; Carrano CJ
    Inorg Chem; 2004 Nov; 43(24):7573-5. PubMed ID: 15554616
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Machine-Learning-Based Olfactometer: Prediction of Odor Perception from Physicochemical Features of Odorant Molecules.
    Shang L; Liu C; Tomiura Y; Hayashi K
    Anal Chem; 2017 Nov; 89(22):11999-12005. PubMed ID: 29027463
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 52. KELM-CPPpred: Kernel Extreme Learning Machine Based Prediction Model for Cell-Penetrating Peptides.
    Pandey P; Patel V; George NV; Mallajosyula SS
    J Proteome Res; 2018 Sep; 17(9):3214-3222. PubMed ID: 30032609
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of support vector machine to three-dimensional shape-based virtual screening using comprehensive three-dimensional molecular shape overlay with known inhibitors.
    Sato T; Yuki H; Takaya D; Sasaki S; Tanaka A; Honma T
    J Chem Inf Model; 2012 Apr; 52(4):1015-26. PubMed ID: 22424085
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Creating the New from the Old: Combinatorial Libraries Generation with Machine-Learning-Based Compound Structure Optimization.
    Podlewska S; Czarnecki WM; Kafel R; Bojarski AJ
    J Chem Inf Model; 2017 Feb; 57(2):133-147. PubMed ID: 28158942
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A big data approach with artificial neural network and molecular similarity for chemical data mining and endocrine disruption prediction.
    Paulose R; Jegatheesan K; Balakrishnan GS
    Indian J Pharmacol; 2018; 50(4):169-176. PubMed ID: 30505052
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Predicting the acute ecotoxicity of chemical substances by machine learning using graph theory.
    Takata M; Lin BL; Xue M; Zushi Y; Terada A; Hosomi M
    Chemosphere; 2020 Jan; 238():124604. PubMed ID: 31450113
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of factor Xa inhibitors by machine learning methods.
    Lin HH; Han LY; Yap CW; Xue Y; Liu XH; Zhu F; Chen YZ
    J Mol Graph Model; 2007 Sep; 26(2):505-18. PubMed ID: 17418603
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Making Individual Prognoses in Psychiatry Using Neuroimaging and Machine Learning.
    Janssen RJ; Mourão-Miranda J; Schnack HG
    Biol Psychiatry Cogn Neurosci Neuroimaging; 2018 Sep; 3(9):798-808. PubMed ID: 29789268
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physical stability of drugs after storage above and below the glass transition temperature: Relationship to glass-forming ability.
    Alhalaweh A; Alzghoul A; Mahlin D; Bergström CAS
    Int J Pharm; 2015 Nov; 495(1):312-317. PubMed ID: 26341321
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.